Advertisement

Siberian Mathematical Journal

, Volume 40, Issue 5, pp 938–947 | Cite as

Bicombing triangular buildings

  • G. A. Noskov
Article

Keywords

Simplicial Complex Directed Edge Cayley Graph Euclidean Plane Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Juan and R. B. Martin, “Semihyperbolic groups,” Proc. London Math. Soc.,70, No. 3, 56–114 (1995).zbMATHMathSciNetGoogle Scholar
  2. 2.
    D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston et al, Word Processing and Group Theory, Jones and Bartlet Publ., Boston (1992).Google Scholar
  3. 3.
    S. M. Gersten and H. B. Short, “Small cancellation theory and automatic groups. II,” Invent. Math.,105, 641–662 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    W. D. Neumann and M. Shapiro, “Automatic structures and boundaries for graphs of groups,” Internat. J. Algebra Comput.,4, No. 4, 591–616 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. I. Cartwright and M. Shapiro, “Hyperbolic buildings, affine buildings and automatic groups,” Michigan Math. J.,42, No. 3, 511–523 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    D. I. Cartwright, A. M. Mantero, T. Steger and A. Zappa, “Groups acting simply transitively on the vertices of a building of typeà 2. I, II,” Geom. Dedicata, I:47, 143–166 (1993); II:47, 167–223 (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    K. S. Brown, Buildings, Springer-Verlag, Berlin (1989).zbMATHGoogle Scholar
  8. 8.
    M. Bridson, “Geodesics and curvature in metric simplicial complexes,” in: Group Theory from a Geometrical Viewpoint, Proc. ICTP Trieste, World Scientific, Singapore (1991).Google Scholar
  9. 9.
    D. I. Cartwright, “Groups acting simply transitively on the vertices of a building of typeà n,” Groups of Lie Type and Their Geometries: Proceedings of the Conference Held in Como, Italy, June 14–19 1993, Cambridge Univ. Press, Cambridge, 1995, pp. 43–76. (London Math. Soc. Lecture Note Ser.;207).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • G. A. Noskov

There are no affiliations available

Personalised recommendations