Metallurgical Transactions A

, Volume 19, Issue 6, pp 1425–1427 | Cite as

Kinetics of hydrogen absorption in alpha titanium

  • Charles C. Brown
  • Robert E. Buxbaum
Transport Phenomena


Hydrogen absorption and desorption often limits a material’s application. For titanium, hydrogen absorption kinetics determine its suitability for tritium storage, tritium gettering, and vacuum pump applications. This study examines the absolute rate theory energy surface which molecular hydrogen gas encounters as it is absorbed into alpha-phase titanium. This results in useful new predictions for hydrogen absorption rates, desorption rates, and surface coverages on titanium. The only energy surface which is consistent with observed activation and absorption enthalpies, while predicting all absorption/desorption rate data, is found to contain a new activation barrier. Accuracy is within a factor of 3.6 for two surface preparations and temperatures between 250 and 500 °C.


Metallurgical Transaction Tritium Hydrogen Absorption Activation Barrier Titanium Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. S. Drolet, K. Y. Wong, and P. J. C. Dinner:Nuclear Technology/ Fusion, 1984, vol. 5, pp. 17–29.Google Scholar
  2. 2.
    H. D. Rohrig, K. D. Fischmann, and W. Haubold:J. Vac. Sci. Tech-nol., 1980, vol. 17, no. 1, pp. 120–24.CrossRefGoogle Scholar
  3. 3.
    E. A. Gulbransen and K. F. Andrews:Trans. AIME, 1949, vol.185, pp. 741–48.Google Scholar
  4. 4.
    D. Laser:J. Vac. Sci. Technol., 1982, vol. 20, pp. 37–44.CrossRefGoogle Scholar
  5. 5.
    R. E. Buxbaum and E. F. Johnson:Nuclear Technol., 1980, vol.49, pp. 307–14.Google Scholar
  6. 6.
    E. Frommand and E. Gebhardt:Gase und Kolenstoff in Metallen, Springer-Verlag, Berlin, 1976, p. 407.Google Scholar
  7. 7.
    M. A. Pick:The Kinetics of Hydrogen Adsorption-Desorption by Metals, G. Bombakidis, ed., Proc. NATO Adv. Study Inst. On Metal Hydrides, June 17–27 Rhodes, Greece, Plenum Press, 1981, pp. 329–43.Google Scholar
  8. 8.
    G. Wedler and H. Stronthenk:Z. Phys. Chem. N.F., 1966, vol.48, pp. 86–101.Google Scholar
  9. 9.
    P. Cremaschi and J. L. Whitten:Surface Science, 1981, vol.112, pp. 343–58.CrossRefGoogle Scholar
  10. 10.
    A. W. Aldag and L. D. Schmidt:J. Catalysis, 1971, vol.22, pp. 260–65.CrossRefGoogle Scholar
  11. 11.
    G. D. Berkheimer and R. E. Buxbaum:J. Vac. Sci. Technol., 1985, vol.2, Ae, pp. 412–16.Google Scholar
  12. 12.
    M. D. Stiles and J. K. Wilkins:Phys. Rev. Lett., 1985, vol.54, pp. 595–98.CrossRefGoogle Scholar
  13. 13.
    J. Harra:J. Vac. Sci. Technol., 1976, vol.13, pp. 471–74.CrossRefGoogle Scholar
  14. 14.
    J. P. Sethna:Phys. Rev. B., 1981, vol.24, pp. 698–713.CrossRefGoogle Scholar
  15. 15.
    R. E. Buxbaum:Ph.D. Dissertation, Chem. Engr. Dept. of Princeton University, Oct. 1981, appendix 3.Google Scholar
  16. 16.
    R. E. Buxbaum and E. F. Johnson:I & EC Fundamentals, 1985, vol.24, pp. 180–83.CrossRefGoogle Scholar
  17. 17.
    T. P. Papazoglou and M.T. Hepworth:Trans. TMS-AIME, 1986, vol.242, pp. 682–85.Google Scholar
  18. 18.
    R. B. McLellan and W. A. Oates:Acta Metall., 1973, vol.21, pp. 181–85.CrossRefGoogle Scholar
  19. 19.
    R. J. Wasilewski and G. L. Kehl:Metallurgia, 1954, vol.50, pp. 225–30.Google Scholar
  20. 20.
    G. A. Sommorjai:Science, 1985, vol. 227, pp. 902–08.CrossRefGoogle Scholar
  21. 21.
    F. Pons, J. Lehericy, and J. P Langeron:Surface Science, 1977, vol. 69, pp. 547–64.CrossRefGoogle Scholar

Copyright information

© The Metallurgical Society of AIME 1988

Authors and Affiliations

  • Charles C. Brown
    • 1
  • Robert E. Buxbaum
    • 2
  1. 1.IBM ResearchRolling Meadows
  2. 2.Department of Chemical EngineeringMichigan State UniversityEast Lansing

Personalised recommendations