Siberian Mathematical Journal

, Volume 39, Issue 3, pp 518–521 | Cite as

On relative nearstandardness in ist

  • M. F. Prokhorova


Hausdorff Space Nonstandard Analysis Measurable Cardinal Infinite Cardinal Countable Covering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. I. Gordon, “Relatively standard elements in E. Nelson's internal set theory,” Sibirsk. Mat. Zh.,30, No. 1, 89–95 (1989).MathSciNetGoogle Scholar
  2. 2.
    B. Benninghofen and M. M. Richter, “A general theory of superinfinitesimals,” Fund. Math.,128, No. 3, 199–215 (1987).MATHMathSciNetGoogle Scholar
  3. 3.
    M. F. Prokhorova, “External cardinality of finite sets in nonstandard analysis,” in: Problems of Theoretical and Applied Mathematics [in Russian], UrO RAN, Sverdlovsk, 1993, p. 91.Google Scholar
  4. 4.
    V. G. Kanoveî, “Undecidable hypotheses in Edward Nelson's internal set theory,” Uspekhi Mat. Nauk,46, No. 6, 3–50 (1991).MathSciNetGoogle Scholar
  5. 5.
    K. Kuratowski and A. Mostowski, Theory of Sets [Russian translation], Mir, Moscow (1970).Google Scholar
  6. 6.
    E. Nelson, “Internal set theory: a new approach to nonstandard analysis,” Bull. Amer. Math. Soc.,83, No. 6, 1165–1198 (1977).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. V. Arkhangel'skiî, Topological Function Spaces [in Russian], Moscow Univ., Moscow (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • M. F. Prokhorova

There are no affiliations available

Personalised recommendations