Protoplasma

, 216:227 | Cite as

Architecture of the Golgi apparatus of a scale-forming alga: biogenesis and transport of scales

  • E. K. Hawkins
  • J. J. Lee
Article

Abstract

Mechanisms of transport of secretory products across the Golgi apparatus (GA) as well as of scale formation in prymnesiophytes have remained controversial. We have used a quantitative morphological approach to study formation and transport of scales across the G A in haploid cells ofPleurochrysis sp. The GA of these cells differs from the GA of higher plants in at least six morphological characteristics. Our results show that scales form in the trans-Golgi network (TGN) and transit the TGN in heretofore unrecognized prosecretory vesicles. Prosecretory vesicles differentiate into secretory vesicles prior to exocytosis of scales to the cell surface. Because prosecretory vesicles are only fragments of TGN cisternae, the classical model of cisternal progression is not a valid mechanism of transport in this alga. TGN transport vesicles are also involved in scale formation; however, the role of tubular connections between cisternae of a single stack-TGN unit is not clear. The relationship of two morphological types of cisternal dilations to a membrane-associated, bottlebrush-shaped macromolecule of novel morphology suggests a new hypothesis for the biogenesis of scales.

Keywords

Golgi apparatus Pleurochrysis sp. Trans-Golgi network Algal-scale biogenesis Algal-scale transport Quantitative morphology 

Abbreviations

GA

Golgi apparatus

TGN

trans-Golgi network

PSV

prosecretory vesicle

SV

secretory vesicle

BSM

bottlebrushshaped macromolecule

References

  1. Ayala SJ (1994) Transport and internal organization of membranes: vesicles, membrane networks and GTP-binding proteins. J Cell Sci 107:753–763PubMedGoogle Scholar
  2. Becker B, Bollinger B, Melkonian M (1995) Anterograde transport of algal scales through the Golgi complex is not mediated by vesi-cles. Trends Cell Biol 5: 305–307PubMedCrossRefGoogle Scholar
  3. Beech PL, Wetherbee R (1984) Serial reconstruction of the mito-chondrial reticulum in the coccolithophorid,Pleurochrysis car-terae (Prymnesiophyceae). Protoplasma 123: 226–229CrossRefGoogle Scholar
  4. Brown RM Jr (1969) Observations on the relationship of the Golgi apparatus to wall formation in the marine chrysophycean alga,Pleurochrysis scherffelii Pringsheim. J Cell Biol 41:109–123PubMedCrossRefGoogle Scholar
  5. — Romanovitcz D (1976) Biogenesis and structure of Golgi-derived cellulosic scales inPleurochrysis I: role of the endomembrane system in scale assembly and exocytosis. Appl Polymer Symp 28: 537–585Google Scholar
  6. — Franke WW, Kleinig H, Falk H, Sitte P (1970) Scale formation in chrysophycean algae I: cellulosic and noncellulosic wall compo-nents made by the Golgi apparatus. J Cell Biol 45: 246–271PubMedCrossRefGoogle Scholar
  7. — Herth W, Franke WW, Romanovitz D (1973) The role of the Golgi apparatus in the biosynthesis and secretion of a cellulosic glyco-protein inPleurochrysis: a model system for the synthesis of struc-tural polysaccharides. In: Loewus F (ed) Biogenesis of plant cell wall polysaccharides. Academic Press, New York, pp 207–257Google Scholar
  8. Bullock GR (1984) The current status of fixation for electron microscopy: a review. J Microsc 133:1–15Google Scholar
  9. Driouich A, Staehelin LA (1997) The plant Golgi apparatus: structural organization and functional properties. In: Berger EG, Roth J (eds) The Golgi apparatus. Birkhäuser, Basel, pp 275–301Google Scholar
  10. Dupree P, Sherrier DJ (1998) The plant Golgi apparatus. Biochim Biophys Acta 1404: 259–270PubMedCrossRefGoogle Scholar
  11. Falk H (1969) Fusiform vesicles in plant cells. J Cell Biol 43:167–174PubMedCrossRefGoogle Scholar
  12. Farquhar MG, Palade G (1981) The Golgi apparatus (complex) -(1954-1981) -from artifact to center stage. J Cell Biol 91:77s-103sPubMedCrossRefGoogle Scholar
  13. Featherstone C (1998) Coming to grips with the Golgi. Science 282: 2172–2174PubMedCrossRefGoogle Scholar
  14. Fresnel J, Billard C (1991)Pleurochrysis placolithoides sp. nov. (Prymnesiophyceae), a new marine coccolithophorid with remarks on the status of cricolith-bearing species. Br Phycol J 26: 67–80CrossRefGoogle Scholar
  15. Gilkey JC, Staehelin LA (1986) Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J Electron Microsc Tech 3:177–210CrossRefGoogle Scholar
  16. Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234: 438–443PubMedCrossRefGoogle Scholar
  17. Hawkins EK, Lee JJ (1990) Fine structure of the cell surface of a cultured endosymbiont strain ofPorphyridium sp. (Rhodophyta). Trans Am Microsc Soc 109: 352–360CrossRefGoogle Scholar
  18. Hicks RM (1966) The function of the Golgi complex in transitional epithelium: synthesis of the thick cell membrane. J Cell Biol 30: 623–643PubMedCrossRefGoogle Scholar
  19. Hippe-Sanwald S (1993) Impact of freeze substitution on biological electron microscopy. Microsc Res Tech 24: 400–422PubMedCrossRefGoogle Scholar
  20. Johansen JR, Doucette GJ, Barclay WR, Bull JD (1988) The morphology and ecology ofPleurochrysis carterae var.dentata var. nov. (Prymnesiophyceae), a new coccolithophorid from an inland saline pond in New Mexico, USA. Phycologia 27: 78–88Google Scholar
  21. Jones RF (1962) Extracellular mucilage of the red algaPorphyridium cruentum. J Cell Comp Physiol 60: 61–64CrossRefGoogle Scholar
  22. Jordan RW, Kleijne A (1994) A classification system for living coccolithophores. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 83–105Google Scholar
  23. Karnowsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality in electron microscopy. Fifth Annu Meet Am Soc Cell Biol: 137AGoogle Scholar
  24. Ladinsky MS, Mastronarde DN, Mclntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149PubMedCrossRefGoogle Scholar
  25. Leadbeater BSC (1994) Cell coverings. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 23–46Google Scholar
  26. Lee JJ, Morales J, Bacus JS, Diamont A, Hallock P, Pawlowski J, Thorpe J (1997) Progress in characterizing the endosymbiotic dinoflagellates of soritid foraminifera and related studies on some stages in the life cycle ofMarginopora vertebralis. J Foram Res 27:254–263CrossRefGoogle Scholar
  27. Luft JH (1971) Ruthenium red and violet II: fine structural localization in animal tissues. Anat Rec 171: 369–416PubMedCrossRefGoogle Scholar
  28. Manton I (1967) Further observations on the fine structure ofChrysochromulina chiton with special reference to the hap-tonema,“peculiar” Golgi structure and scale production. J Cell Sci 2: 265–272PubMedGoogle Scholar
  29. — Leedale GF (1969) Observations on the microanatomy ofCoc-colithus pelagicus andCricosphaera carterae, with special reference to the origin and nature of coccoliths and scales. J Mar Biol ssoc UK 49:1–16CrossRefGoogle Scholar
  30. Marsh ME (1994) Polyanion-mediated mineralization: assembly and reorganization of acidic polysaccharides in the Golgi system of a coccolithophorid alga during mineral deposition. Protoplasma 177:108–122CrossRefGoogle Scholar
  31. McLachlan J (1973) Growth media -marine. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 25–51Google Scholar
  32. Melkonian M, Becker B, Becker D (1991) Scale formation in algae. J Electron Microsc Tech 17:165–178PubMedCrossRefGoogle Scholar
  33. Mellman I, Simons K (1992) The Golgi complex: in vitro veritas? J Cell Biol 68: 829–840Google Scholar
  34. Mironov AA, Weidman P, Luini A (1997) Variations on the intra-cellular transport theme: maturing cisternae and trafficking tubules. J Cell Biol 138: 481–484PubMedCrossRefGoogle Scholar
  35. Mollenhauer HH, Morré DJ (1980) The Golgi apparatus. In: Tolbert NE (ed) The biochemistry of plants, vol 1. Academic Press, New York, pp 437–488Google Scholar
  36. — (1991) Perspectives on the Golgi apparatus form and function. J Electron Microsc Tech 17:2–14PubMedCrossRefGoogle Scholar
  37. Morré DJ (1987) The Golgi apparatus. Int Rev Cytol Suppl 17: 211–253Google Scholar
  38. — Keenan TW (1994) Golgi apparatus buds: vesicles or coated ends of tubules? Protoplasma 179:1–4CrossRefGoogle Scholar
  39. — Franke WW, Deumling B, Nyquist SE, Ovtracht L (1971) Golgi apparatus function in membrane flow and differentiation: origin of plasma membranes from endoplasmic reticulum. Biomem-branes 2: 95–104Google Scholar
  40. Novikoff AB (1964) GERL, its form and function in neurons of rat spinal ganglia. Biol Bull 127: 358Google Scholar
  41. Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (1997) Bidirectional transport by distinct pop-ulations of COP1-coated vesicles. Cell 90: 335–349PubMedCrossRefGoogle Scholar
  42. Pelham HRB (1998) Getting through the Golgi complex. Trends Cell Biol 8: 45–49PubMedCrossRefGoogle Scholar
  43. Pienaar RN (1976) The microanatomy ofHymenomonas lacuna sp. nov. (Haptophyceae). J Mar Biol Assoc UK 56:1–11Google Scholar
  44. — (1994) Ultrastructure and calcification of coccolithophores. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge Uni-versity Press, Cambridge, pp 13–37Google Scholar
  45. Porter KR, Kenyon K, Bacicnhausen S (1967) Specializations of the unit membrane. Protoplasma 63: 262–274PubMedCrossRefGoogle Scholar
  46. Rambourg A, Clermont Y (1990) Three-dimensional electron microscopy: structure of the Golgi apparatus. Eur J Cell Biol 51: 189–200PubMedGoogle Scholar
  47. —— (1997) Three-dimensional structure of the Golgi apparatus in mammalian cells. In: Berger EG, Roth J (eds) The Golgi appara-tus. Birkhäuser, Basel, pp 37–61Google Scholar
  48. Romanovicz DK (1981) Scale formation in flagellates. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 27–62Google Scholar
  49. Rothman JE, Orci L (1992) Molecular dissection of the secretory pathway. Nature 355: 409–415.PubMedCrossRefGoogle Scholar
  50. Schnepf E (1993) Golgi apparatus and slime secretion in plants: the early implications and recent models of membrane traffic. Proto-plasma 172: 3–11.Google Scholar
  51. Simionescu N, Simionescu M (1976) Galloylglucoses of low mole-cular weight as mordant in electron microscopy. J Cell Biol 70: 608–621PubMedCrossRefGoogle Scholar
  52. Staehelin LA, Moore I (1995) The plant Golgi apparatus: structure, functional organization and trafficking mechanisms. Annu Rev Plant Physiol Plant Mol Biol 46: 261–288Google Scholar
  53. van der Wal P, de Jong EW, Westbroek P, de Bruun WC, Mulder-Stapel AA (1983) Polysaccharide localization, coccolith forma-tion, and Golgi dynamics in the coccolithophoridHymenomonas carterae. J Ultrastruct Res 85:139–158PubMedCrossRefGoogle Scholar
  54. Weidman P (1995) Anterograde transport through the Golgi complex: do Golgi tubules hold the key? Trends Cell Biol 5: 302–305PubMedCrossRefGoogle Scholar
  55. — Roth R, Heuser J (1993) Golgi membrane dynamics imaged by freeze-etch electron microscopy: views of different membrane coatings involved in tubulation versus vesiculation. Cell 75: 123–133PubMedGoogle Scholar
  56. Winter A, Siesser WG (1994) Atlas of living coccolithophores. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge Uni-versity Press, Cambridge, pp 107–159Google Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • E. K. Hawkins
    • 1
  • J. J. Lee
    • 1
  1. 1.Department of BiologyCity College of City University of New YorkNew YorkNew York

Personalised recommendations