Metallurgical Transactions B

, Volume 24, Issue 4, pp 563–570

Leaching of Cu2O with aqueous solution of sulfur dioxide

  • A. A. Youzbashi
  • S. G. Dixit
Hydrometallurgy

Abstract

Leaching of Cu2O with aqueous SO2 solution is significant, since during the dissolution process, precipitation of copper as Chevreul’s salt also takes place under appropriate conditions. The dissolution is controlled by surface reactions and proceeds through both aqueous SO2 and acid dissolution paths. An overall rate equation based on the above premise has been found to agree well with the experimental data. At pH values higher than 1.8, precipitation of copper as Chevreul’s salt takes place after about 10 minutes of leaching. The extent of the precipitation depends upon the pH, SO2 concentration, initial Cu2+ concentration, and sulfate concentration in the leaching solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Sullivan:Trans. AIME, 1933, vol. 106, pp. 519–21.Google Scholar
  2. 2.
    J.D. Sullivan and G.L. Oldright: RI 2967, U.S. Bureau of Mines, Washington, DC, 1929.Google Scholar
  3. 3.
    M.E. Wadsworth and D.R. Wadia:Trans. AIME, 1955, vol. 209, p. 755.Google Scholar
  4. 4.
    H. Majima, Y. Awakura, K. Eami, Ueshima, and H. Hirato:Metall. Trans. B., 1989, vol. 20B, pp. 573–80.Google Scholar
  5. 5.
    J.D. Miller and R.Y. Wan:Hydrometallurgy, 1983, vol. 10, pp. 219–42.CrossRefGoogle Scholar
  6. 6.
    I.H. Warren and M.G. Hay:Inst. Min. Metall. Trans. Sect. C, 1975, vol. 84, pp. 49–53.Google Scholar
  7. 7.
    S.E. Khalafalla and J.E. Pohlman:J. Met., 1981, vol. 33 (8), pp. 37–42.Google Scholar
  8. 8.
    G.B. Braul, J.J. Byerley, and G.L. Rempel:Hydrometallurgy, 1983, vol. 9, pp. 307–31.CrossRefGoogle Scholar
  9. 9.
    P.C. Bower and P.J. Brandt:Fr. Demande, 1974, Patent No. 2,197,070.Google Scholar
  10. 10.
    A.A. Youzbashi and S.G. Dixit:Metall. Trans. B., 1991, vol. 22B, pp. 775–81.CrossRefGoogle Scholar
  11. 11.
    P.R. Raisoni and S.G. Dixit:Miner. Eng., 1988, vol. 3, pp. 225–34.CrossRefGoogle Scholar
  12. 12.
    P.B. Linkson and D.M. Nobbs:A Sulfite Route to Cu Recovery, Chemeca 81, Des, Charge, Proc. 9th Australasia Chemical Engineering Conf., Abrahamson, ed., Institute of Engineering, Wellington, New Zealand, 1981, pp. 107–15.Google Scholar
  13. 13.
    Jpn. Kokai Tokkyo koho, 1980, Patent No. 80,115,932.Google Scholar
  14. 14.
    N. Arbiter, D. Milligan, and R. McClincy:Inst. Chem. Eng. Symp. Ser., 1975, vol. 42 (Hydrometallurgy), pp. 1–9.Google Scholar
  15. 15.
    S. Hori and T. Okabe: Wet Process for Manufacturing Metallic Copper, U.S. Patent 3,573,896, 1971.Google Scholar
  16. 16.
    A.J. Parker and D.M. Muir:Australian, 1979, vol. 506, p. 83.Google Scholar
  17. 17.
    H.V. Tartar and H.H. Garretson:J. Am. Chem. Soc, 1941, vol. 63, pp. 808–16.CrossRefGoogle Scholar
  18. 18.
    P.B. Linkson:Precipitation of Metal Sulfites from Aqueous Liquors,Hydrometallurgy, Research Development and Plant Practice, 3rd Proc. Int. Symp., K. Osseo-Asare, ed., 1983, pp. 312–27.Google Scholar
  19. 19.
    M.H. Conklin and M.R. Hoffmann:Environ. Sci. Technol., 1988, vol. 22 (8), pp. 883–98.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Material Society 1993

Authors and Affiliations

  • A. A. Youzbashi
    • 1
  • S. G. Dixit
    • 1
  1. 1.Department of Chemical TechnologyUniversity of BombayBombayIndia

Personalised recommendations