Advertisement

Metallurgical Transactions A

, Volume 21, Issue 6, pp 1725–1732 | Cite as

Ultrasonic velocity change with creep damage in copper

  • M. Hirao
  • T. Morishita
  • H. Fukuoka
Mechanical Behavior

Abstract

We studied the ultrasonic velocity change caused by the accumulative creep damage in polycrystalline pure copper after high-temperature tensile loading. The propagation velocities of bulk waves, longitudinal and shear waves polarized parallel and perpendicular to the stress direction, showed a strong sensitivity to intergranular creep controlled by grain-boundary cavitation and subsequent microcracking. The velocities decreased slowly with creep time up to approximately 60 pct of the lifetime, when the steady creep shifted to the tertiary creep. Beyond this point, they decreased at ever increasing rates until eventual failure. The total velocity changes amounted to several percent of the original velocities. The creep damage also caused velocity anisotropy in the shear waves. Evolution in the anisotropy revealed that formation of cavity arrays, cavity coalescence, and microcracking, which occurred preferentially on boundaries lying normal to the stress axis, were restricted to the last 20 pct of the lifetime. Metallography and measurements of porosity support the ultrasonic observations.

Keywords

Metallurgical Transaction Ultrasonic Velocity Reference Specimen Creep Damage Tertiary Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Willem, W. Bendick, and H. Weber: inNondestructive Characterization of Materials II, J.F. Bussiere, J.-P. Monchalin, CO. Ruud, and R.E. Green, Jr., eds., Plenum Press, New York, NY, 1987, pp. 451–59.Google Scholar
  2. 2.
    H. Willem: inNondestructive Characterization of Materials II, J.F. Bussiere, J.-P. Monchalin, C.O. Ruud, and R.E. Green, Jr., eds., Plenum Press, New York, NY, 1987, pp. 471–79.Google Scholar
  3. 3.
    H.M. Ledbetter, R.J. Fields, and S.K. Datta:Acta Metall., 1987, vol. 35, pp. 2393–98.CrossRefGoogle Scholar
  4. 4.
    M. Nakashiro, H. Yoneyama, and A. Ohtomo: inProc. Int. Conf. on Advances in Material Technology for Fossil Power Plants, ASM INTERNATIONAL, Metals Park, OH, 1987, pp. 351–58.Google Scholar
  5. 5.
    S. Kishimoto, N. Shinya, S. Matsumoto, and H. Fukuhara: inProc. 26th Symp. on Strength of Materials at High Temperatures (in Japanese), The Society of Materials Science, Tokyo, Japan, Dec. 1988, pp. 11–15.Google Scholar
  6. 6.
    A.S. Birring, D.G. Alcazer, J.J. Hanley, and S. Gehl:m Review of Progress in Quantitative Nondestructive Evaluation, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1989, vol. 8B, pp. 1833–40.Google Scholar
  7. 7.
    M.F. Ashby, C. Gandhi, and D.M.R. Taplin:Acta Metall, 1979, vol. 27, pp. 699–729.CrossRefGoogle Scholar
  8. 8.
    C.M. Sayers:J. Phys. D, 1982, vol. 15, pp. 2157–67.CrossRefGoogle Scholar
  9. 9.
    M. Hirao, K. Aoki, and H. Fukuoka:J. Acoust. Soc. Am., vol. 81, 1987, pp. 1434–40.CrossRefGoogle Scholar
  10. 10.
    M. Piau:Int. J. Eng. Sci., 1980, vol. 18, pp. 549–68.CrossRefGoogle Scholar
  11. 11.
    C.M. Sayers and R.L. Smith:J. Phys. D, 1983, vol. 16, pp. 1189–94.CrossRefGoogle Scholar
  12. 12.
    F.J. Sabina and J.R. Willis:Proc. IUTAM Symp. Elastic Wave Propagation, M.F. McCarthy and M. Hayes, eds., Elsevier/North-Holland, New York, NY, 1989, pp. 327–32.Google Scholar
  13. 13.
    H. Toda, H. Fukuoka, and H. Ohmori:J. Soc. Mater. Sci., Japan, (in Japanese), 1982, vol. 31, pp. 238–43.Google Scholar
  14. 14.
    J.R. Willis:J. Mech. Phys. Solids, 1980, vol. 28, pp. 307–27.CrossRefGoogle Scholar
  15. 15.
    H.M. Ledbetter and S.K. Datta:J. Acoust. Soc. Am., 1986, vol. 79, pp. 239–48.CrossRefGoogle Scholar
  16. 16.
    C. Ihara, T. Yanagi, and T. Tanaka:ASME J. Eng. Mater. Technol., in press.Google Scholar
  17. 17.
    L.M. Kachanov:Introduction to Continuum Damage Mechanics, Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1986, pp. 6–8.Google Scholar
  18. 18.
    M. Rides, A.C.F. Cocks, and D.R. Hayhurst:ASME J. Appl. Mech., 1989, vol. 56, pp. 493–98.CrossRefGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1990

Authors and Affiliations

  • M. Hirao
    • 1
  • T. Morishita
    • 2
  • H. Fukuoka
    • 1
  1. 1.Faculty of Engineering ScienceOsaka UniversityOsakaJapan
  2. 2.Akashi Technological CollegeHyogoJapan

Personalised recommendations