Advertisement

Metallurgical Transactions A

, Volume 6, Issue 4, pp 653–668 | Cite as

Metallurgical factors affecting fracture toughness of aluminum alloys

  • G. T. Hahn
  • A. R. Rosenfield
Symposium on Advances in the Physical Matallurgy of Aluminum Alloys

Abstract

Crack extension in commercial aluminum alloys proceeds by the “ductile” or fibrous mode. The process involves the large, ~1 μm to ~10μm, Fe-, Si-, and Cu-bearing inclusions which break easily, and the growth of voids at the cracked particles. The linking-up of the voids is accomplished by the rupture of the intervening ligaments, and this is affected by the fine, ~0.01μm precipitate particles that strengthen the matrix. The ~0.1μm Cr-, Mn-, and Zr-rich intermediate particles are more resistant to cracking and may enter the process in the linking-up stage. The fracture toughness of aluminum alloys therefore depends on a) the extent of the heavily strained region ahead of the crack tip, which is a function of the yield strength arad modulus, b) the size of the ligaments which is related tof c, the volume fraction of cracked particles, and c) the work of rupturing the ligaments. An approximate analysis predicts KIc varies asf c-1/6, and this is in agreement with measurements on alloys with comparable yield strength levels. Studies in which the aging conditions are altered for the samef cshow that the toughness decreases with increasing yield strength level. This degradation in toughness is related to the localization of plastic deformation. The tendency for localization is illustrated with the help of “plane strain” tension and bend specimens whose behavior is related to the toughness. Measurements of the strain distribution on the microscale show that slip is relatively uniformly distributed in a 7000-type alloy with low inclusion and particle content when the material is in the as-quenched and overaged conditions. In contrast the distribution is highly nonuniform in the peak aged condition where slip is concentrated in widely spaced superbands involving coarse slip bands with large offsets that crack prematurely. The connection between the tendency for slip localization and the fine precipitate particles which strengthen the matrix remains to be established. In overaged alloys grain boundary ruptures occur within the superbands. The amount of intergranular failure increases with grain size and is accompanied by a loss of fracture toughness.

Keywords

Aluminum Alloy Metallurgical Transaction Peak Aged Condition Intermediate Particle Commercial Aluminum Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Develay:Metals and Materials, 1972, vol. 6, p. 404.Google Scholar
  2. 2.
    A. R. Rosenfield:Met. Rev., 1968, no. 121, p. 29.Google Scholar
  3. 3.
    G. T. Hahn, M. F. Kanninen, and A. R. Rosenfield:Ann. Rev. Mater. Sci., 1972, vol. 2, p. 381.CrossRefADSGoogle Scholar
  4. 4.
    D. Broek:Eng. Fract. Mech., 1973, vol. 5, p. 55.CrossRefGoogle Scholar
  5. 5.
    D. Broek: Report NLR-TR-72029-u; Nat. Aerospace Lab., The Netherlands (n.d.)Google Scholar
  6. 6.
    J. P. Tanaka, C. A. Pampillo, and J. R. Low, Jr.: ASTM-STP, 1970, vol. 463, p.191.Google Scholar
  7. 7.
    J. R. Low, Jr., R. H. Van Stone, and R. H. Merchant: NASA Tech. Rep. No. 2, Research Grant NCR 38-087-003, Carnegie-Mellon Univ., 1972.Google Scholar
  8. 8.
    S. N. Singh and M. C. Flemings:Trans. AIME, 1969, vol. 245, p. 1811.Google Scholar
  9. 9.
    J. H. Mulherin and H. Rosenthal:Met. Trans., 1971, vol. 2, p. 427.CrossRefGoogle Scholar
  10. 10.
    D. S. Thompson and S. A. Levy: AFML-TR-70-171, Wright-Patterson AFB, Ohio, 1970.Google Scholar
  11. 11.
    J. A. Nock, Jr. and H. Y. Hunsickler:J. Metals, 1963, vol. 15, p. 216.Google Scholar
  12. 12.
    C. J. Peel, R. N. Wilson, and P. J. E. Forsyth:Metal Sci. J., 1972, vol. 6, p. 102.CrossRefGoogle Scholar
  13. 13.
    P. N. T. Uhwin and G. C. Smith:J. Inst. Met., 1969, vol. 97, p. 299.Google Scholar
  14. 14.
    S. N. Singh and M. C. Flemings:Trans. AIME, 1969, vol. 245, p. 1803.Google Scholar
  15. 15.
    K. R. VanWorn, ed:.Aluminum, 1967, vol. 1, ASM, Metals Park, Ohio.Google Scholar
  16. 16.
    L. F.Mondolfo:Met. Rev., 1971, vol. 16, p. 95.Google Scholar
  17. 17.
    S. M. El-Soudani and R. M. Pelloux:Met. Trans., 1973, vol. 4, p. 519.CrossRefGoogle Scholar
  18. 18.
    A. R. Rosenfield, C.W. Price, C.J.Martin, D. N. Williams, D.C. Drennen, D. S. Thompson, and R. E, Zinkham: Semiannual Progress Report on Con-tract F33615-71-C-1805 to AFMLJLLS, 1972.Google Scholar
  19. 19.
    A. S. Argon, J. 1m, and R. Safoglu: Massachusetts Institute of Technology, private communication.Google Scholar
  20. 20.
    T. B. Cox and J. R. Low, Jr.: NASA Tech. Rep. No. 3 on Research Grant NGR-39-087-003, Carnegie-Mellon Univ., 1972.Google Scholar
  21. 21.
    J. Gurland:Acta Met., 1972, vol. 20, p. 735.CrossRefGoogle Scholar
  22. 22.
    T. Liu and J. Gurland:Trans. ASM, 1968, vol. 61, p. 156.Google Scholar
  23. 23.
    B. I. Edelson and W. M. Baldwin, Jr.:Trans. ASM, 1962, vol. 53, p. 230.Google Scholar
  24. 24.
    J. J. Hauser and M. G. Wells: Tech. Rep. AFML-TR-69-339, Wright Patterson AFB, Ohio, 1969.Google Scholar
  25. 25.
    A. J. Birkle, R. P. Wei, and G. E. Pellesier:Trans. ASM, 1966, vol. 59, p. 981.Google Scholar
  26. 26.
    G. T. Hahn, P. N. Mincer, and A. R. Rosenfield:Exp. Mech., 1971, vol. 11, p. 248.CrossRefGoogle Scholar
  27. 27.
    J. R. Rice and M. A. Johnson:Inelastic Behavior of Solids, M. F. Kanninen, et al., eds., p.641, McGraw-Hill, New York, 1970.Google Scholar
  28. 28.
    J. W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16, p. 13.zbMATHCrossRefADSGoogle Scholar
  29. 29.
    N. Levy, P. V. Marcal, W. J. Ostergren, and J. R. Rice:Int. J. Fract. Mech., 1971, vol.7, p. 143.Google Scholar
  30. 30.
    F. A. McClintock:Fracture, H. Liebowitz, ed., vol. 3, p. 106, Academic Press, New York, 1971.Google Scholar
  31. 31.
    J. R. Rice and D. M. Tracey:J. Mech. Phys. Solids, 1969, vol. 17, p. 201.CrossRefADSGoogle Scholar
  32. 32.
    J.M. Krafft:Appl. Mater. Res., 1964, vol. 3, p. 88.Google Scholar
  33. 33.
    F. A. McClintock:Fracture, H. Liebowitz, ed., vol. 3, p. 47, Academic Press, New York, 1971.Google Scholar
  34. 34.
    P. F. Thomasson:Int. J. Fract. Mech., 1971, vol. 7, p. 409.Google Scholar
  35. 35.
    G. T. Hahn and A. R. Rosenfield: Paper PL-III-211, Third Int. Conf. Fracture, Munich, 1973.Google Scholar
  36. 36.
    T. B. Cox and J. R. Low, Jr.: NASA Tech. Rep. No. 4 on Research Grant NGR-39-087-003, Carnegie-Mellon Univ., 1972.Google Scholar
  37. 37.
    F. A. McClintock, S. M. Kaplan, and C. A. Berg:Int. J. Fract. Mech., 1966, vol. 2, p. 615.Google Scholar
  38. 38.
    C. A. Berg:Inelastic Behavior of Solids, M.F. Kanninen,et al, eds., p. 171, McGraw-Hill, New York, 1970.Google Scholar
  39. 39.
    C. A. Griffis and J. W. Spretnak:J Iron Steel Inst. Japan, 1969, vol. 9, p. 372.Google Scholar
  40. 40.
    M. S. Hunter and J. C. McMillan: ASTM-STP, 1968, vol. 436, p. 196.Google Scholar
  41. 41.
    A. Kelly and R. B. Nicholson:Prog. Mater. Sci, 1963, vol. 10, p. 151.CrossRefGoogle Scholar
  42. 42.
    J. D. Embury and R. B. Nicholson:Acta Met, 1965, vol. 13, p. 403.CrossRefGoogle Scholar
  43. 43.
    M. O. Speidel:Fundamental Aspects of Stress Corrosion Cracking, p. 561, Nat. Assn. Corr. Engs., Houston, 1969.Google Scholar
  44. 44.
    R. N. Wilson and P. G. Partridge:Acta Met., 1965, vol. 13, p. 1321.CrossRefGoogle Scholar
  45. 45.
    R. N. Wilson, D. M. Moore, and P. J. E. Forsythe:J. Inst. Metals, 1967, vol. 95, p. 177.Google Scholar
  46. 46.
    N. Sen and D. R. F. West:The Mechanism of Phase Transformations in Crystalline Solids, p. 49, Inst. Met., London, 1969.Google Scholar
  47. 47.
    R. E. Zinkham, J. H. Dedrick, and J. H. Jackons: Proceedings of 5th International Leichtmetalltagung Leoben Austria, 1968, Aluminium-Verlag GMBH, Dusseldorf, Germany.Google Scholar
  48. 48.
    T. M. F. Ronald and D. P. Voss: Metals and Ceramics Synthesis Branch, LLS, Wright-Patterson AFB, Ohio, unpublished research.Google Scholar
  49. 49.
    D. P. Clausing:Int. J. Fract. Mech., 1970, vol. 6, p. 71.Google Scholar
  50. 50.
    D. P. Clausing: Tech. Rep. on Project No. 35.066-001(2), U.S. Steel Corp., Research Lab., 1972.Google Scholar
  51. 51.
    S. A. Mohamed and A. S. Tetelman: Proceedings of the Third Int. Conf. on Fracture, Vol. III, Verein Deutscher Eisenhuttenleute, Dusseldorf, Germany, April, 1973, Paper II-511.Google Scholar
  52. 52.
    D. L. McGarry: M.S. Thesis, Ohio State University, 1972.Google Scholar
  53. 53.
    A. S. Tetelman: Univ. of Cal. at L. A., private communication, 1973.Google Scholar
  54. 54.
    V. Weiss and N. Sengupta: Proceedings of the Third Int. Conf. on Fracture, Vol. IV, Verein Deutscher Eisenhuttenleute, Dusseldorf, Germany, April, 1973, Paper III-341.000Google Scholar
  55. 55.
    J. D. Boyd, D. S. Thompson, D. N. Williams, and D. C. Drennen: First Semi- annual Progress Report on Contract F33615-71-C1805 to AFMLJLLS, January 31, 1972.Google Scholar
  56. 56.
    I. Kirman:Met. Trans., 1971, vol. 2, p. 1761.Google Scholar
  57. 57.
    D. S.Thompson, R. E. Zinkham, and C. W. Price: unpublished research on Contract No. F33615-71-C-1805.Google Scholar
  58. 58.
    C. J. Beevers and W. K. Honeycomb:Phil. Mag., 1962, vol. 7, p. 763.CrossRefADSGoogle Scholar
  59. 59.
    R. J. Price and A. Kelly:Acta Met., 1964, vol. 2, p. 979.CrossRefGoogle Scholar
  60. 60.
    D. Harkness and J.J. Hren:Met. Trans., 1970, vol. 1, p. 43.Google Scholar
  61. 61.
    I. G. Palmer and G. C. Smith:Oxide Dispersion Strengthening, p. 253, Gordon and Breach, 1968.Google Scholar
  62. 62.
    G. T. Hahn and A. R. Rosenfield: unpublished research.Google Scholar
  63. 63.
    T. B. Cox and J. R. Low, Jr.: NASA Technical Report No. 5, Dept. of Metallurgy and Materials Science, Carnegie-Mellon Univ., 1973.Google Scholar

Copyright information

© American Society for Metals, The Melallurgical Society of AIME 1975

Authors and Affiliations

  • G. T. Hahn
    • 1
  • A. R. Rosenfield
    • 1
  1. 1.Metal Science Section, BattelleColumbus LaboratoriesColumbus

Personalised recommendations