Advertisement

Journal of Phase Equilibria

, Volume 14, Issue 4, pp 465–472 | Cite as

Solid electrolyte cell studies of solid nickel-gallium alloys

  • J. N. Pratt
  • J. M. Bird
Section II: Basic and Applied Research

Abstract

Reversible galvanic cells employing ZrO2-CaO solid electrolytes and either Pt/O2 (air) or Ni/NiO reference electrodes were used to measure thermodynamic properties of solid Ni-Ga alloys at temperatures between 873 and 1100 K. Activities, partial Gibbs energies, and integral Gibbs energies, entropies, and enthalpies have been obtained for the a (fcc) solid solution and for the intermediate phases—Ni3Ga, Ni5Ga3, Ni3Ga2, Ni13Ga9, NiGa, and Ni2Ga3. The system is characterized by negative deviations from ideality, exothermic enthalpies, and negative entropies of formation. An analysis of the latter in terms of configurational, electronic, vibrational, dilatational, and magnetic contributions is suggested.

Keywords

Entropy Gibbs Energy Ni3Ga Partial Gibbs Energy Exothermic Enthalpy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited References

  1. 10Lin:.
    F.A. Lindemann,Phys. Z.,11, 609 (1910).Google Scholar
  2. 43Wei:.
    F. Weibke and O. Kubaschewski,Thermochemistry of Alloying, Springer, Berlin (1943).Google Scholar
  3. 5OHe1:.
    E. Hellner,Z. Metallkd.,41, 480 (1950).Google Scholar
  4. 51Kub:.
    O. Kubaschewski and E.L1. Evans,Metallurgical Thermo-chemistry, 1sted., Butterworth, London (1951).Google Scholar
  5. 52Vle:.
    J. H.vanVleck,.Rev. Mod. Phys.,25, 221 (1952).Google Scholar
  6. 52Wag:.
    C. Wagner,Thermodynamics of Alloys, Addison-Wesley, New York (1952).Google Scholar
  7. 57Gla:.
    A. Glassner,ANLReportNo. 5750(1957).Google Scholar
  8. 57Tau:.
    K.J. Tauer and R. Weiss,J. Phys. Chem. Solids, 2, 237 (1957).ADSCrossRefGoogle Scholar
  9. 59Cra:.
    J. Crangle and M J. C. Martin,Philos. Mag.,4, 1006 ( 1959).ADSCrossRefGoogle Scholar
  10. 61Lan:.
    Landolt-Bornstein Tables, 6th ed., Springer, Heidelberg, 2(4), 747,749(1961).Google Scholar
  11. 62Kau:.
    L. Kaufman,Trans. Metall. Soc. AIME, 244, 1006 (1962).Google Scholar
  12. 63Clo:.
    E.V. Clougherty and L. Kaufman,Acta Metall., 11, 1043 (1963).CrossRefGoogle Scholar
  13. 64Gup:.
    K.P. Gupta, C. H. Cheng, and P. A. Beck,Phys. Rev.,133, 203 (1964).ADSCrossRefGoogle Scholar
  14. 64Sey1:.
    A.U. Seyboltand J. H. Westbrook,Acta Metall., 12, 449 (1964).CrossRefGoogle Scholar
  15. 64Sey2:.
    A.U. Seybolt,J. Electrochem. Soc.,111, 697 (1964).CrossRefGoogle Scholar
  16. 68Dix:.
    M. Dixon, F.E. Hoare, and T. M. Holden,Proc. R. Soc. A, 303, 339 (1968).ADSCrossRefGoogle Scholar
  17. 69Bha:.
    S. Bhan and K. Schubert,J. Less-Common Met.,17, 73 (1969).CrossRefGoogle Scholar
  18. 69Deb:.
    E.R. de Boer, C. J. Schinkel, L. Biesterbos, and S. Proost,J. Appl. Phys., 40, 1049 (1969).ADSCrossRefGoogle Scholar
  19. 69Ell1:.
    M. Ellner, S. Bhan, and K. Schubert,J. Less-Common Met 19 245 (1969).CrossRefGoogle Scholar
  20. 69Ell2:.
    M. Ellner, K.J. Best, H. Jacobi, and K. Schubert,J. Less-Common Met.,79, 294 (1969).CrossRefGoogle Scholar
  21. 70Bry:.
    A.W. Bryant, W.G. Bugden, and J. N. Pratt,Acta Metall., 18, 101 (1970).CrossRefGoogle Scholar
  22. 70Pug:.
    L.A. PugIiese and G. R. Fitterer,Metall. Trans.,1,1997(1970).Google Scholar
  23. 71Dar:.
    B. Darby, KM. Myles, and J. N. Pratt,Acto Metall.,19, 7 (1971).CrossRefGoogle Scholar
  24. 71Jac:.
    H. Jacobi, D. Stockel, H.L. Lukas,Z. Metallkd.,62, 305 (1971).Google Scholar
  25. ba]72Bry:
    A. W. Bryant and J. N. Pratt, Proc. Colloque Int., CNRS, No. 201, Thermochemie, Marseille (1972).Google Scholar
  26. 73Doo:.
    W. de Dood and P.F. de Chatel,J. Phys. F, Met. Phys.,3, 1039 (1973).ADSCrossRefGoogle Scholar
  27. 73Hu1:.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley,Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, OH (1973).Google Scholar
  28. 73Kat:.
    I. Katayama and Z. Kozuka, Tech. Rep. Osaka Univ.,23, 411 (1973).Google Scholar
  29. 73Pra:.
    J. N. Pratt, J. M. Bird, and S. Martosudirjo, Final Technical Report, United States Department of the Army, Contract No. DAJA37-73-C-3034(1973).Google Scholar
  30. 74Kat:.
    I. Katayama, S. Igi, and Z. Kozuka,Trans. Jpn. Inst. Met.,15, 447 (1974).CrossRefGoogle Scholar
  31. 75Bir:.
    J.M. Bird, A.W. Bryant, and J.N. Pratt,J.Chem. Thermodyn., 7, 577 (1975).CrossRefGoogle Scholar
  32. 76Mar:.
    S. Martosudirjo and J.N. Pratt,Thermochim. Acta., 17, 183 (1976).CrossRefGoogle Scholar
  33. 76Neu:.
    J. Neumann, Y.A. Chang, and C.M. Lee,Acta Metall., 24, 593 (1976).CrossRefGoogle Scholar
  34. 77And:.
    T.J. Anderson and L.F. Donaghey,J.Chem. Thermodyn.,9, 603 (1977).CrossRefGoogle Scholar
  35. 78El1:.
    M. Ellner,J. Less-Common Met. 60, p 15 (1978).CrossRefGoogle Scholar
  36. 79Fes:.
    P. Feschotte and P. Eggimann,J.Less-Common Met.,63, 15 (1979).CrossRefGoogle Scholar
  37. 81Ahm:.
    Nazeer Ahmad and J. N. Pratt,Thermochim. Acta., 45, 139 (1981).CrossRefGoogle Scholar
  38. 82Com:.
    H. ComertandJ.N. Pratt,Thermochim. Acto, 59, 267 (1982).CrossRefGoogle Scholar
  39. 85Com:.
    H. Comertand J.N. Pratt,Thermochim. Acto, 84, 273 (1985).CrossRefGoogle Scholar
  40. 87Mik:.
    A. Mikula, W. Schuster, Y.A. Chang, and E.T. Henig,Z. Metallkd.,78, 172 (1981).Google Scholar
  41. 89Gue:.
    R. Guerinand A. Guivarc’h,J. Appl. Phys.,66, 2122 (1989).ADSCrossRefGoogle Scholar

Copyright information

© ASM International 1993

Authors and Affiliations

  • J. N. Pratt
    • 1
  • J. M. Bird
    • 1
  1. 1.School of Metallurgy and MaterialsUniversity of BirminghamEngland

Personalised recommendations