Journal of Phase Equilibria

, Volume 14, Issue 4, pp 439–450 | Cite as

Phase diagrams and thermodynamics of the systems ZrO2-CaO and ZrO2-MgO

  • Y. Yin
  • B. B. Argent
Section II: Basic and Applied Research


The partial phase diagrams of the systems ZrO2-CaO and ZrO2-MgO were determined using precision lattice parameter measurements in order to check uncertainties reported in the literature. The results are in general agreement with the previous investigations by Hellmann and Stubican [83HeI], Grain [67Gra], and Sim and Stubican [87Sim]. Enthalpies of formation of the fluorite cubic solid solution and the Ca26Zr19O44 ordered phase, with reference to the monoclinic zirconia and the periclase forms of CaO and MgO, were measured calorimetrically. Assessment of the thermodynamic properties of these two systems shows that it is appropriate to model the systems with a simple single cation sublattice model. The eutectoid of the cubic phase in ZrO2-CaO, according to both the optimization and the experimental results, is located at 1412 ± 50 K and 16.2 ±1.0 mol% CaO and in the ZrO2-MgO binary at 1678 ± 5 K and 13.1 ± 0.5 mol% MgO. The calculated phase diagrams are presented for comparison with the experimental results.


Zirconia Phase Diagram Halite Lattice Stability National Physical Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited References

  1. 28War:.
    H.V. Wartenberg, H. Linde, and R. Jung,Z. Anorg. Allg. Chem.,176, 349 (1928).Google Scholar
  2. 29Ruf:.
    O. Ruff, F. Ebert, and E. Stephan,Z. Anorg. Allg. Chem.,180, 215 (1929).Google Scholar
  3. 33Ebe:.
    V.F. Ebert and E. Cohn,Z. Anorg. Allg. Chem.,213, 321 (1933).Google Scholar
  4. 40Zhi:.
    N.A. Zhirnowa,Zh. PrM. Khim, 12, 1278 (1939). SeeCeram. Abstracts, 79(8), 201 (1940).Google Scholar
  5. 52Duw:.
    P. Duwez, F. Odell, and F.H. Brown, Jr.,J. Am. Ceram. Soc.,35, 107 (1952).Google Scholar
  6. 55Nad:.
    M.R. Nadler and E.S. Fitzsimmons,J. Am. Ceram. Soc.,38, 214 (1955).Google Scholar
  7. 62Hin:.
    I. Hinz and A. Dietzel,Ber. Deut. Keram. Ges.,39, 530 (1962).Google Scholar
  8. 63Tie:.
    T.Y. Tienand E.C. Subbarao,J. Chem.Phys.,39, 1041 (1963).ADSGoogle Scholar
  9. 65Bar:.
    I. Barbariol,Ann. Chim. (Rome), 55, 321 (1965).Google Scholar
  10. 65Din:.
    A.M. Dinessand R. Roy,Solid state Commun.,3, 123 (1965).ADSGoogle Scholar
  11. 65Mez:.
    M. Mezaki, E.W. Tilleux, T.F. Jambois, and J.L. Margrave, inAdvances Thermophys. Properties Extreme Temp. Press., 3rd ASME Symp., Lafayette, Indiana, 138(1965).Google Scholar
  12. 65Vie:.
    D. Viechnicki and V.S. Stubican,J. Am. Ceram. Soc.,48, 292 (1965).Google Scholar
  13. 67Gra:.
    C.F. Grain,J. Am. Ceram. Soc.,50, 288 ( 1967).Google Scholar
  14. 67Nog:.
    T. Noguchi, M. Mizuno, and W.M. Conn,Sol. Energy, 11, 145 (1967).ADSGoogle Scholar
  15. 68Car:.
    R.E. Carter and W.L. Roth, inElectromotive Force Measurements in High Temperature Systems,C.B. Alcock, Ed., Inst, of Mining and Metallurgy, London, 125–144 (1968).Google Scholar
  16. 68Gar:.
    R.C. Game,J. Am. Ceram. Soc.,51, 553 (1968).Google Scholar
  17. 68Nog:.
    T. Noguchi and M. Mizuno,Bull. Chem. Soc. Jpn, 41, 1583 (1968).Google Scholar
  18. 69Tra:.
    J.-P. Traverse and M. Foex,High Temp.—High Press.,1, 409 (1969).Google Scholar
  19. 70Low:.
    N.M.P. Low and A.C.D. Chaklader,Mater. Res. Bull 5, 137 (1970).Google Scholar
  20. 72Mic:.
    D. Michel,Rev. Int. Hautes Temp. Refract.,9, 225 (1972).Google Scholar
  21. 72Piz:.
    S. Pizzini and R. Morlotti,J. Chem. Soc. Faraday Trans.,68, 1601 (1972).Google Scholar
  22. 73Mic:.
    D. Michel,Mater. Res. Bull, 8, 943 (1973).Google Scholar
  23. 74Aza:.
    S. de Aza, C. Richmond, and J. White,Trans. J. Br. Ceram. Soc.,73, 109 (1974).Google Scholar
  24. 74Gan:.
    J. Ganguly and G.C. Kennedy,Contrib. Mineral Petrol.,48, 138 (1974).ADSGoogle Scholar
  25. 77Kub:.
    O. Kubaschewski and H. Unal,High Temp.—High Press.,9, 361 (1977).Google Scholar
  26. 77Lev:.
    V.A. Levitskii, Yu. Khekimov, P.B. Narchuk, and Ya.I. Gerasimo,Russ. J. Phys. Chem.,51, 1494 (1977).Google Scholar
  27. 77Stu:.
    V.S. Stubican and SP. Ray,J. Am. Ceram. Soc.,60, 534 (1977).Google Scholar
  28. 78Lon:.
    V. Longo and L. Podda,Ceramurgia Int.,4, 21 (1978).Google Scholar
  29. 79Hen:.
    A.F. Henriksen and W.D. Kingery,Ceramurgia Int.,5, 11 (1979).Google Scholar
  30. 81Sco:.
    H.G. Scott,J. Aust. Ceram. Soc.,17, 16 (1981).Google Scholar
  31. 83He1:.
    J.R. Hellmann and V.S. Stubican,J. Am. Ceram. Soc.,66, 260 (1983).Google Scholar
  32. 84Han:.
    J. Hangas, T.E. Mitchell, and AH. Heuer, inAdvances in Ceramics, Vol 12, Science and Technology of Zirconia II, N. Claussen, M. Ruhle, and AH. Heuer, Ed., Am. Ceram. Soc. Inc., Columbus, OH, 107–117 (1984).Google Scholar
  33. 84Heu:.
    A.H. Heuer and M. Ruhle, inAdvances in Ceramics, Vol. 12, Science and Technology of Zirconia II, N. Claussen, M. Ruhle, and A.H. Heuer, Ed., Am. Ceram. Soc. Inc.,Columbus,OH, 1–13 (1984).Google Scholar
  34. 84Sru:.
    V.S. Stubican, G.S. Corman, J.R. Hellmann, and G. Senft, inAdvances in Ceramics, Vol. 12, ScienceandTechnology of Zxrconia. II, N. Claussen, M. Ruhle, and A.H. Heuer, Ed., Am. Ceram. Soc. Inc., Columbus, OH, 96–106 (1984).Google Scholar
  35. 85And:.
    K. Ando, Y. Oishi, H. Koizumi, and Y Sakka,J. Mater. Sci. Lett.,4, 176 (1985).Google Scholar
  36. 85Cha:.
    M. W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., DJ. Frurip, R. A. McDonald, and A.N. Syverud, in “JANAFThermochemical Tables,” 3rd ed.,J. Phys. Chem Ref. Data, 14 .Supplement No. 1 (1985).Google Scholar
  37. 87Nav:.
    A. Navrotsky,Rev. inMineralogy, 17, 35 (1987).Google Scholar
  38. 87Sim:.
    S.M. Sim and V.S. Stubican,J. Am. Ceram.Soc.,70, 521 (1987).Google Scholar
  39. 88Ech:.
    J. Echigoya, K. Sasai, and H. Suto,Trans. JIM, 29, 561 (1988).Google Scholar
  40. 88Stu:.
    V.S. Stubican, inAdvances in Ceramics, Vol. 24, Science and Technology of Zirconia III, S. Somiya, N. Yamamoto, and H. Hanagida, Ed., Am. Ceram. Soc. Inc., Columbus, OH, 71 –82 (1988).Google Scholar
  41. 91Din:.
    OXUNARY data bank, Compiled by A.T. Dinsdale, NPL Teddington,U.K.Google Scholar
  42. 91Du:.
    Yong Du, Ph.D. thesis submitted 1991, Central South University ofTechnology,Changsha, Hunan410083,PRC,(1991).Google Scholar
  43. 92How:.
    R.A. Howald,Calphad, 16, 25 (1992).Google Scholar
  44. 92Yin:.
    Y Yin, Supervisors B.B. Argent and A.W. Bryant, Ph.D. thesis, University of Sheffield, UK (1992).Google Scholar
  45. 93Kub:.
    O. Kubaschewski, C.B. Alcock, and PJ. Spencer,Materials Thermochemistry, Pergamon Press, Oxford, UK (1993).Google Scholar
  46. 93Yin1:.
    Y. Yin and B.B. Argent, “The Ordered Phases in the System ZrO2-CaO,” to be published.Google Scholar
  47. 93Yin2:.
    Y. Yin and B.B. Argent, “The Thermodynamics of the Systems ZrO2-CaO-MgO and MgO-CaO,”J. Phase Equilibria, 14(5), to be published(1993).Google Scholar

Copyright information

© ASM International 1993

Authors and Affiliations

  • Y. Yin
    • 1
  • B. B. Argent
    • 1
  1. 1.Department of Engineering MaterialsUniversity of SheffieldSheffieldUK

Personalised recommendations