Journal of Electronic Materials

, Volume 23, Issue 4, pp 369–373 | Cite as

Damage and strain in pseudomorphic vs relaxed GexSi1−x layers on Si(100) generated by Si ion irradiation

  • D. Y. C. Lie
  • A. Vantomme
  • F. Eisen
  • T. Vreeland
  • M. -A. Nicolet
  • T. K. Carns
  • K. L. Wang
  • B. Holländer
Article

Abstract

We compare both the strain and damage that 100 keV Si irradiation at room temperature introduces in pseudomorphic and relaxed GexSi1−x films grown on Si(100) substrates. The ion range is such that the Si/GexSi1−x interface is not significantly damaged. The amount of damage produced in pseudomorphic and relaxed GexSi1−x layers of similar x for irradiation doses up to 2.5 × 1014 Si/cm2 is the same, which proves that a pre-existing uniform strain does not noticeably affect the irradiation-induced damage. However, the irradiation-induced strain does depend on the pre-existing strain of the samples. Possible interpretations are discussed.

Key words

GeSi irradiation damage Si ion irradiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Vos, C. Wu, I.V. Mitchell, T.E. Jackman, J.-M. Baribeau and J.P. McCaffrey,Nucl. Instr. and Meth. B 66, 361 (1992).CrossRefGoogle Scholar
  2. 2.
    T.E. Haynes and O. W. Holland,Appl. Phys. Lett. 61,61 (1992).CrossRefGoogle Scholar
  3. 3.
    R.M Lum, J.K. Klingert, B.A Davidson and M.G. Lamont,Appl. Phys. Lett. 51, 36 (1987).CrossRefGoogle Scholar
  4. 4.
    C.J. Tsai, A. Dommann, M.-A. Nicolet and T. Vreeland, Jr.,J. Appl. Phys. 69, 2076 (1991).CrossRefGoogle Scholar
  5. 5.
    D.Y.C. Lie, A. Vantomme, F. Eisen, M.-A. Nicolet, V. Arbet-Engels and K.L. Wang,Mater. Res. Soc. Symp. Proc. 262,1079 (1993).Google Scholar
  6. 6.
    G. Bai and M.-A. Nicolet,J. Appl. Phys. 71, 4227 (1992).CrossRefGoogle Scholar
  7. 7.
    L.C. Feldman, J.W. Mayer and S.T. Picranx,Materials Analysis by Ion Channeling (London, Academic Press, 1982).Google Scholar
  8. 8.
    G. Bai and M.-A. Nicolet,J. Appl. Phys. 70, 3551 (1991).CrossRefGoogle Scholar
  9. 9.
    G. Bai and M.-A. Nicolet,J. Appl. Phys. 70, 649 (1991).CrossRefGoogle Scholar
  10. 10.
    J.F. Ziegler, J.P. Biersack and U. Littmark,The Stopping and Range of Ions in Matter (London: Pergamon Press, 1985).Google Scholar
  11. 11.
    K.B. Winterbon,Ion Implantation Range and Energy Deposition Distributions (New York: Plenum Press, 1975), Vol. 2.Google Scholar
  12. 12.
    D.A. Thompson and R.S. Walker,Rad. Eff. 36, 91 (1978).CrossRefGoogle Scholar
  13. 13.
    R.S. Walker and D.A. Thompson,Rad. Eff. 37, 113 (1978).CrossRefGoogle Scholar
  14. 14.
    D.A. Thompson, R.S. Walker and J.A. Davies,Rad. Eff. 32, 135 (1977).CrossRefGoogle Scholar
  15. 15.
    D.Y.C. Lie, A. Vantomme, F. Eisen, M.-A. Nicolet, T.K. Cams and K L. Wang,J. of Appl. Phys. 74, 8 (1993).CrossRefGoogle Scholar
  16. 16.
    H.B. Huntington,Solid State Physics, Vol. 7, eds. F. Sietz and D. Turnbull, (New York: Academic Press Inc., 1950), p. 214.Google Scholar
  17. 17.
    W.A. Brantley,J. Appl. Phys. 44, 534 (1973).CrossRefGoogle Scholar
  18. 18.
    J.J. Wortman and R.A. Evans,J. Appl. Phys. 36, 153 (1965).CrossRefGoogle Scholar
  19. 19.
    M.R. Eidmann and K.E. Newman,Phys. Rev. B45, 8388 (1992).Google Scholar
  20. 20.
    T.E. Haynes and O.W. Holland,Nucl. Instr. and Meth. B80/81, 901 (1993).Google Scholar

Copyright information

© The Mineral,Metal & Materials Society,Inc. 1994

Authors and Affiliations

  • D. Y. C. Lie
    • 1
  • A. Vantomme
    • 1
    • 4
  • F. Eisen
    • 1
  • T. Vreeland
    • 1
  • M. -A. Nicolet
    • 1
  • T. K. Carns
    • 2
  • K. L. Wang
    • 2
  • B. Holländer
    • 3
  1. 1.California Institute of TechnologyPasadena
  2. 2.Department of Electrical EngineeringUniversity of CaliforniaLos Angeles
  3. 3.Institiute of Thin Film and Ion TechnologyJülichGermany
  4. 4.National Fund for Scientific ResearchBelgium

Personalised recommendations