Metallurgical Transactions B

, Volume 17, Issue 1, pp 119–131 | Cite as

Rotational electromagnetic stirring in continuous casting of round strands

  • Karl-Heinz Spitzer
  • Mathias Dubke
  • Klaus Schwerdtfeger
Process Control


A model is presented to compute the three-dimensional flow field in rotational electromagnetic stirring of round strands. The model involves the solution of the Maxwell equations, the Navier-Stokes equations, and the transport equations for the turbulence characteristicsk andε. For the limiting case of one-dimensional stirring, the computations were checked with experiments using mercury as the fluid. Several sets of computations were carried out to determine the influence of stirrer position, stirrer length, and electromagnetic parameters on the flow field in continuous casting of steel strands.


Metallurgical Transaction Angular Velocity Wall Shear Stress Continuous Casting Secondary Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Jacobi and R. Steffen:Stahl und Eisen, 1978, vol. 98,pp. 1179–87.Google Scholar
  2. 2.
    J. P. Birat and J. Choné:Ironmaking and Steelmaking, 1983, vol. 10, pp. 269–81.Google Scholar
  3. 3.
    H. K. Moffatt:ZAMM, 1978, vol. 58, pp. T65-T71.Google Scholar
  4. 4.
    P. Smith:ZAMM, 1964, vol. 44, pp. 495–502.CrossRefGoogle Scholar
  5. 5.
    A. B. Kapusta:Magnetohydrodynamics, 1968, vol. 4, no. 2, pp. 51–54.Google Scholar
  6. 6.
    E. Dahlberg: “On the action of a rotating magnetic field on a conducting liquid,” AB Atomenergie, Sweden, 1972, Rep. AE-447.Google Scholar
  7. 7.
    A. Alemany and R. Moreau:J. de Mécanique, 1977, vol. 16, pp. 626–46.Google Scholar
  8. 8.
    H.K. Moffatt:J. Fluid Mech., 1965, vol. 22, part 3, pp. 521–28.CrossRefGoogle Scholar
  9. 9.
    A. T. Richardson:J. Fluid Mech., 1974, vol. 63, part 3, pp. 593–605.CrossRefGoogle Scholar
  10. 10.
    V. V. Dremov and A. B. Kapusta:Magnetohydrodynamics, 1970, vol. 6, no. 1, pp. 87–91.Google Scholar
  11. 11.
    T. Robinson with an Appendix by K. Larsson:J. Fluid Mech., 1973, vol. 60, part 4, pp. 641–64.CrossRefGoogle Scholar
  12. 12.
    K.-H. Tacke and K. Schwerdtfeger:Stahl und Eisen, 1979, vol. 99, pp. 7–12.Google Scholar
  13. 13.
    P. Van den Hove: “Brassage électromagnétique à champ tournant dans les puits de coulée continue de l’acier,” Thesis, Institut National Polytechnique de Grenoble, France, 1982.Google Scholar
  14. 14.
    R. Bird, W.E. Steward, and E. N. Lightfoot:Transport Phenomena, John Wiley & Sons, New York, NY, 1960.Google Scholar
  15. 15.
    B. E. Launder and D. B. Spalding:Mathematical Models of Turbulence, Academic Press, New York, NY, 1972.Google Scholar
  16. 16.
    W. Rodi: “Turbulent models and their application in hydraulics,” IAHR, ISBN 9021270021, 1980.Google Scholar
  17. 17.
    P. Bradshaw: “Effects of streamline curvature on turbulent flow.” AGARDograph No. 169, 1973.Google Scholar
  18. 18.
    K. -H. Spitzer: “Berechnung von Strömungen beim elektromagnetischen Rotationsrühren von Rundsträngen,” Thesis, Technische Universität Clausthal, Germany, 1985.Google Scholar
  19. 19.
    L.S. Caretto, A.D. Gosman, S.V. Patankar, and D.B. Spalding: “Two calculation procedures for steady, three-dimensional flows with recirculation,” Proc. Third Int. Conf. Numerical Methods in Fluid Dynamics, Paris, 1972.Google Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining 1986

Authors and Affiliations

  • Karl-Heinz Spitzer
    • 1
  • Mathias Dubke
    • 1
  • Klaus Schwerdtfeger
    • 1
  1. 1.Institut für Allgemeine MetallurgieClausthal-ZellerfeldGermany

Personalised recommendations