Advertisement

Metallurgical and Materials Transactions A

, Volume 26, Issue 8, pp 1939–1946 | Cite as

Structural evolution in mechanically alloyed Al-Fe powders

  • D. K. Mukhopadhyay
  • C. Suryanarayana
  • F. H. (SAM) FROES
Article

Abstract

The structural evolution in mechanically alloyed binary aluminum-iron powder mixtures containing 1, 4, 7.3, 10.7, and 25 at. pct Fe was investigated using X-ray diffraction (XRD) and electron microscopic techniques. The constitution (number and identity of phases present), microstructure (crystal size, particle size), and transformation behavior of the powders on annealing were studied. The solid solubility of Fe in Al has been extended up to at least 4.5 at. pct, which is close to that observed using rapid solidification (RS) (4.4 at. pct), compared with the equilibrium value of 0.025 at. pct Fe at room temperature. Nanometer-sized grains were observed in as-milled crystalline powders in all compositions. Increasing the ball-to-powder weight ratio (BPR) resulted in a faster rate of decrease of crystal size. A fully amorphous phase was obtained in the Al-25 at. pct Fe composition, and a mixed amorphous phase plus solid solution of Fe in Al was developed in the Al-10.7 at. pct Fe alloy, agreeing well with the predictions made using the semiempirical Miedema model. Heat treatment of the mechanically alloyed powders containing the supersaturated solid solution or the amorphous phase resulted in the formation of the Al3Fe intermetallic in all but the Al-25 at. pct Fe powders. In the Al-25 at. pct Fe powder, formation of nanocrystalline Al5Fe2 was observed directly by milling. Electron microscope studies of the shock-consolidated mechanically alloyed Al-10.7 and 25 at. pct Fe powders indicated that nanometer-sized grains were retained after compaction.

Keywords

Material Transaction Amorphous Phase Mechanical Alloy Solid Solubility Rapid Solidification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.H. Shingu: inFirst Int. Conf. on Processing Materials for Properties, H. Henein and T. Oki, eds. TMS, Warrendale, PA, 1993, pp. 1275–80.Google Scholar
  2. 2.
    F.H. Froes, C. Suryanarayana, K. Russell, and C.G. Li:Int. J. Mechanochem. Mech. Alloying, 1994, vol. 1, pp. 112–24.Google Scholar
  3. 3.
    J.S. Benjamin:Metall. Trans., 1970, vol. 1, pp. 2943–51.Google Scholar
  4. 4.
    C.C. Koch: inProcessing of Metals and Alloys, R.W. Cahn, ed., VCH Verlagsgesellschaft, Weinheim, F.R. Germany, 1991, Materials Science and Engineering—A Comprehensive Treatment, pp. 193–245.Google Scholar
  5. 5.
    D. Maurice and T.H. Courtney:Metall. Trans. A., 1990, vol. 21A, pp. 289–303.Google Scholar
  6. 6.
    C. Suryanarayana and F.H. Froes:Mater. Sci. Forum, 1992, vol. 88–90, pp. 445–52.CrossRefGoogle Scholar
  7. 7.
    C. Suryanarayana and F.H. Froes:Metall. Trans. A., 1992, vol. 23A, pp. 1071–81.Google Scholar
  8. 8.
    C.C. Koch:Nanostructured Mater., 1993, vol. 2, pp. 109–29.CrossRefGoogle Scholar
  9. 9.
    Dispersion Strengthened Aluminum Alloys, Y.W. Kim and W.M. Griffith, eds., TMS, Warrendale, PA, 1988.Google Scholar
  10. 10.
    Mechanical Alloying for Structural Applications, J.J. deBarbadillo, F.H. Froes, and R. Schwarz, eds., ASM INTERNATIONAL, Materials Park, OH, 1993.Google Scholar
  11. 11.
    T.B. Massalski:Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1986, vol. 1, pp. 147–49.Google Scholar
  12. 12.
    C. Suryanarayana:Bull. Mater. Sci., 1994, vol. 17, pp. 307–46.Google Scholar
  13. 13.
    C. Suryanarayana, F.H. Froes, D.K. Mukhopadhyay, G. Cizmich, G.H. Chen, Z. Peng, and J. Mishurda: inProcessing and Fabrication of Advanced Materials III, V.A. Ravi, T.S. Srivatsan, and J.J. Moore, eds., TMS, Warrendale, PA, 1994, pp. 567–84.Google Scholar
  14. 14.
    M.A. Morris and D.G. Morris:Mater. Sci. Eng. A, 1991, vol. 136, pp. 59–70.CrossRefGoogle Scholar
  15. 15.
    D.K. Mukhopadhyay, C. Suryanarayana, and F.H. Froes:Scripta Metall. Mater., 1994, vol. 31, pp. 333–38.CrossRefGoogle Scholar
  16. 16.
    Metallic Glasses, T.R. Anantharaman, ed., Trans Tech Pub., Aedermannsdorf, Switzerland, 1984.Google Scholar
  17. 17.
    C. Suryanarayana and F.H. Froes:Nanostructured Mater., 1993, vol. 3, pp. 147–53.CrossRefGoogle Scholar
  18. 18.
    B. Huang: Ph.D. Thesis, Kyoto University, Japan, 1990.Google Scholar
  19. 19.
    B. Huang, N. Tokijane, K.N. Ishihara, P.H. Shingu, and S. Nasu:J. Non-Cryst. Solids, 1990, vol. 117/118, pp. 688–91.CrossRefGoogle Scholar
  20. 20.
    I.S. Polkin, E.J. Kaputkin, and A.B. Borzov: inStructural Applications of Mechanical Alloying, F.H. Froes and J.J. deBarbadillo, eds., ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 251–56.Google Scholar
  21. 21.
    Y. Dong, W.H. Wang, L. Lin, K.Q. Xiao, S.H. Tong, and Y.Z. He:Mater Sci. Eng. A, 1991, vol. 134, pp. 867–71.CrossRefGoogle Scholar
  22. 22.
    G. Wang, D. Zhang, H. Chen, B. Lin, W. Wang, and Y. Dong:Phys. Lett. A, 1991, vol. 155, pp. 57–61.CrossRefGoogle Scholar
  23. 23.
    G. Korth: inAdvanced Synthesis of Engineered Structural Materials, J.J. Moore, E.J. Lavernia, and F.H. Froes, eds., ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 81–86.Google Scholar
  24. 24.
    B.D. Cullity:Elements of X-Ray Diffraction, Addison-Wesley Pub. Co., Reading, MA, 1976.Google Scholar
  25. 25.
    S.K. Pradhan, T. Chakraborty, S.P. Sengupta, C. Suryanarayana, A. Frefer, and F.H. Froes:Nanostructured Mater., 1995, vol. 5, pp. 53–61.CrossRefGoogle Scholar
  26. 26.
    G. Falkenhagen and W. Hofmann:Z. Metallkd., 1952, vol. 43, p. 69.Google Scholar
  27. 27.
    A. Fontaine and A. Guinier:Phil. Mag., 1971, vol. 31, p. 70.Google Scholar
  28. 28.
    M. De Sanctis, A.P. Woodfield, and M.H. Loretto:Int. J. Rapid Solidification, 1988, vol. 4, pp. 53–74.Google Scholar
  29. 29.
    A. Kamio, H. Tezuka, T. Sato, T.T. Long, and T. Takahashi:J. Jpn. Inst. Light Met., 1986, vol. 36, pp. 72–80.Google Scholar
  30. 30.
    P. Furrer and H. Warlimont:Z. Metallkd., 1973, vol. 64, pp. 236–48.Google Scholar
  31. 31.
    A. Tonejc and A. Bonefacic:J. Appl. Phys., 1968, vol. 40, pp. 419–20.CrossRefGoogle Scholar
  32. 32.
    K.F. Kobayashi, N. Tachibana, and P.H. Shingu:J. Mater. Sci., 1990, vol. 25, pp. 801–04.Google Scholar
  33. 33.
    K.F. Kobayashi, N. Tachibana, and P.H. Shingu:J. Mater. Sci., 1990, vol. 25, pp. 3149–54.CrossRefGoogle Scholar
  34. 34.
    M.D. Zdujic, K.F. Kobayashi, and P.H. Shingu:J. Mater. Sci., 1991, vol. 26, pp. 5502–08.CrossRefGoogle Scholar
  35. 35.
    M.D. Zdujic, K.F. Kobayashi, and P.H. Shingu:Z. Metallkd., 1990, vol. 81, pp. 380–85.Google Scholar
  36. 36.
    H. Jones:Rapid Solidification of Metals and Alloys, Institution of Metallurgists, London, 1982.Google Scholar
  37. 37.
    R.B. Schwarz, R.R. Petrich, and C.K. Saw:J. Non-Cryst. Solids, 1985, vol. 76, pp. 281–302.CrossRefGoogle Scholar
  38. 38.
    A.K. Messen, F.R. de Boer, R. Boom, P.F. de Chatel, W.C.M. Martens, and A.R. Miedema:CALPHAD, 1983, vol. 7, pp. 51–70.CrossRefGoogle Scholar
  39. 39.
    T. Koyano, T. Takizawa, T. Fukunaga, U. Mizutani, S. Kamizuru, E. Kita, and A. Tasaki:J. Appl. Phys., 1993, vol. 73, pp. 429–33.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Material Society 1995

Authors and Affiliations

  • D. K. Mukhopadhyay
    • 1
  • C. Suryanarayana
    • 1
  • F. H. (SAM) FROES
    • 1
  1. 1.Institute for Materials and Advanced ProcessesUniversity of IdahoMoscow

Personalised recommendations