Plant Molecular Biology Reporter

, Volume 6, Issue 4, pp 240–252 | Cite as

Satellite RNAs of plant viruses

  • Anne E. Simon


Cucumber Mosaic Virus Plant Virus Helper Virus Turnip Crinkle Virus Tomato Aspermy Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



satellite RNA


cucumber mosaic virus


cherry leaf roll virus


tomato aspermy virus


turnip crinkle virus


tobacco mosaic virus


tobacco ring spot virus


satellite tobacco ring spot virus


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altenbach, S.B., and S.H. Howell. 1981. Identification of a satellite RNA associated with turnip crinkle virus. Virology 112:25–33.CrossRefPubMedGoogle Scholar
  2. Anzola, J.V., Z. Xu, T. Asamizu, and D.L. Nuss. 1987. Segment-specific inverted repeats found adjacent to conserved terminal sequences in wound tumor virus genome and defective interfering RNAs. Proc. Natl. Acad. Sci. (USA) 84:8301–8305.CrossRefGoogle Scholar
  3. Baulcombe, D., M. Devic, M. Jaegle, and B. Harrison. 1988. Control of viral infection in transgenic plants by expression of satellite RNA of cucumber mosaic virus. In: Molecular Biology of Plant Pathogen Interactions. (eds B. Staskowicz, P. Ahlquist, and O. Yoder). UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 101 in press. Alan R. Liss, Inc., New York, New York.Google Scholar
  4. Branch, A.D., and H.D. Robertson. 1984. A replication cycle for viroids and other small infectious RNAs. Science 223:450–455.PubMedCrossRefGoogle Scholar
  5. Bujarski, J.J., P. Ahlquist, T.C. Hall, T.W. Dreher, and P. Kaesberg. 1986. Modulation of replication, aminoacylation and adenylationin vitro and infectivityin vivo of BMV RNAs containing deletions within the multifunctional 3′ end. EMBO J. 5:1769–1774.PubMedGoogle Scholar
  6. Burgyan, J., G. Francesco, and M. Russo. 1988. A defective interfering RNA molecule in cymbidium ringspot virus infections. J. Gen Virol in press.Google Scholar
  7. Buzayan, J.M., W.L. Gerlach, and G. Bruening. 1986a. Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA. Nature 323:349–352.CrossRefGoogle Scholar
  8. Buzayan, J.M., W.L. Gerlach, G. Bruening, P. Keese, and A.R. Gould. 1986b. Nucleotide sequence of satellite tobacco ringspot virus RNA and its relationship to multimeric forms. Virology 151:186–199.CrossRefPubMedGoogle Scholar
  9. Carrington, J.C., T.J. Morris, P.G. Stockley, and S.C. Harrison. 1987. Structure and assembly of turnip crinkle virus. IV. Analysis of the coat protein gene and implications of the subunit primary structure. J. Mol. Biol. 94:265–276.CrossRefGoogle Scholar
  10. Cech, T.R. 1986. A model for the RNA-catalyzed replication of RNA. Proc. Natl. Acad. Sci. (USA) 83:4360–4363.CrossRefGoogle Scholar
  11. Collmer, C.W., A. Hadidi, and J.M. Kaper. 1985. Nucleotide sequence of the satellite of peanut stunt virus reveals structural homologies with viroids and certain nuclear and mitochondrial introns. Proc. Natl. Acad. Sci. (USA) 82:3110–3114.CrossRefGoogle Scholar
  12. Collmer, C.W., and J.M. Kaper. 1986. Infectious RNA transcripts from cloned cDNAs of cucumber mosaic viral satellites. Biochem. Biophys. Res. Comm. 135:290–296.PubMedCrossRefGoogle Scholar
  13. Collmer, C.W., and J.M. Kaper. 1988. Site-directed mutagenesis of potential protein-coding regions in expressible cloned cDNAs of cucumber mosaic viral satellites. Virology 163:293–298.PubMedCrossRefGoogle Scholar
  14. Dinter-Gottlieb, G. 1986. Viroids and virusoids are related to group I introns. Proc. Natl. Acad. Sci. (USA) 83:6250–6254.CrossRefGoogle Scholar
  15. Forster, A.C. and R.H. Symons. 1987a. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49:211–220.PubMedCrossRefGoogle Scholar
  16. Forster, A.C., and R.H. Symons. 1987b. Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell 50:9–16.PubMedCrossRefGoogle Scholar
  17. Forster, A.C., C. Davies, C.C. Sheldon, A.C. Jeffries, and R.H. Symons. 1988. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature 334:265–267.PubMedCrossRefGoogle Scholar
  18. Francki, R.I.B. 1985. Plant virus satellites. Ann. Rev. Microbiol. 39:151–174.CrossRefGoogle Scholar
  19. Fritsch, C., and M.A. Mayo. 1988. Satellites of plant viruses. In: Plant Viruses, vol. I “Structure and Replication”. CRC Press.Google Scholar
  20. Fromm, M., L.P. Taylor, and V. Walbot. 1985. Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. (USA) 82:5824–5828.CrossRefGoogle Scholar
  21. Garcia-Arenal, F., M. Zaitlin, and P. Palukaitis. 1987. Nucleotide sequence analysis of six satellite RNAs of cucumber mosaic virus: Primary sequence and secondary structure alterations do not correlate with differences in pathogenicity. Virology 158:339–347.CrossRefPubMedGoogle Scholar
  22. Gerlach, W.L., J.M. Buzayan, I.R. Scheider, and G. Bruening. 1986. Satellite tobacco ringspot virus RNA: Biological activity of DNA clones and theirin vitro transcripts. Virology 151:172–185.CrossRefPubMedGoogle Scholar
  23. Gerlach, W.L., D. Llewellyn, and J. Haseloff. 1987. Construction of a plant disease resistance gene from the satellite RNA of tobacco ringspot virus. Nature 328:802–805.CrossRefGoogle Scholar
  24. Gilbert, W. 1986. The RNA world. Nature 319:618.CrossRefGoogle Scholar
  25. Gordon, K.H.J., and R.H. Symons. 1983. Satellite RNA of cucumber mosaic virus forms a secondary structure with partial 3′-terminal homology to genomal RNAs. Nucleic Acids. Res. 11:947–960.PubMedCrossRefGoogle Scholar
  26. Gould, A.R., P. Palukaitis, R.H. Symons, and D.W. Mossop. 1978. Characterization of a satellite RNA associated with cucumber mosaic virus. Virology 84:443–455.PubMedCrossRefGoogle Scholar
  27. Harrison, B.D., M.A. Mayo, and D.C. Baulcombe. 1987. Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA. Nature 328:799–802.CrossRefGoogle Scholar
  28. Haseloff, J., and W.L. Gerlach. 1988. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334:585–591.PubMedCrossRefGoogle Scholar
  29. Hillman, B.I., J.C. Carrington, T.J. Morris. 1987. A defective interfering RNA that contains a mosaic of a plant virus genome. Cell 51:427–433.PubMedCrossRefGoogle Scholar
  30. Hidaka, S., K. Hanada, K. Ishikawa, and K-I. Miura. 1988. Complete nucleotide sequence of two new satellite RNAs associated with cucumber mosaic virus. Virology 164:326–333.PubMedCrossRefGoogle Scholar
  31. Holland, J.J. 1986. Generation and replication of defective viral genomes.In: Virology. (eds. B.N. Fields and D.M. Knipe), pp. 77–99. Raven Press, New York.Google Scholar
  32. Hutchins, C.J., P. Keese, J.E. Visvader, P.D. Rathjen, J.L. Meinnes, and R.H. Symons. 1985. Comparison of multimeric plus and minus forms of viroids and virusoids. Plant Mol. Biol. 4:293–304.CrossRefGoogle Scholar
  33. Hutchins, C.J., P.D. Rathjen, A.C. Forster, and R.H. Symons. 1986. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acid Res. 14:3627–3640.PubMedCrossRefGoogle Scholar
  34. Ishikawa, M., T. Meshi, T. Ohno, Y. Okada, T. Sano, I. Ueda, and E. Shikata. 1984. A revised replication cycle for viroids: The role of longer than unit length RNA in viroid replication. Mol. Gen. Genet. 196:421–428.PubMedCrossRefGoogle Scholar
  35. Ismail, I.D. and J.J. Milner. 1988. Isolation of defective interfering particles of sonchus yellow net virus from chronically infected plants. J. gen. Virol. 69:999–1006.CrossRefGoogle Scholar
  36. Jacquemond, M., and G.J.-M. Lauquin. 1988. The cDNA of cucumber mosaic virus-associated satellite RNA hasin vivo biological properties. Biochem. Biophys. Res. Comm. 151:388–395.PubMedCrossRefGoogle Scholar
  37. Jacquemond, M., and H. Lot. 1981. L'ARN satellite du virus de la mosaïque du conconbre. I. Comparison de l'aptitude a induire la necrose de la tomate d'ARN satellites isolés de plusieurs souches du virus. Agronomie 1:927–932.CrossRefGoogle Scholar
  38. Kaper, J.M., and C.W. Collmer. 1988. Modulation of viral plant diseases by secondary RNA agents. In: RNA Genetics. (eds. E. Domingo, J. Holland, P. Ahlquist) Vol. 3 in press. CRC Press, Boca Raton FL.Google Scholar
  39. Kaper, J.M., A.S. Duriat, and M.E. Tousignant. 1986. The 368-nucleotide satellite of cucumber mosaic virus strain Y from Japan does not cause lethal necrosis in tomato. J. Gen. Virol. 67:2241–2246.Google Scholar
  40. Kaper, J.M., and M.E. Tousignant. 1984. Viral satellites: parasitic nucleic acids capable of modulating disease expression. Endeavour New Series 8:194–200.CrossRefGoogle Scholar
  41. Kaper, J.M., M.E. Tousignant, and M.T. Steen. 1988. Cucumber mosaic virus-associated RNA 5. XI. Comparison of 14 CARNA 5 variants relates ability to induce tomato necrosis to a conserved nucleotide sequence. Virology 163:284–292.PubMedCrossRefGoogle Scholar
  42. Kaper, J.M., M.E. Tousignant, and G. Steger. 1988. Nucleotide sequence predicts circularity and self-cleavage of 300-ribonucleotide satellite of arabis mosaic virus. Biochem. Biophy. Res. Commun., in press.Google Scholar
  43. Kaper, J.M. and H.E. Waterworth. 1977. Cucumber mosaic virus-associated RNA 5: Causal agent for tomato necrosis. Science 196:429–431.CrossRefPubMedGoogle Scholar
  44. Kurath, G., and P. Palukaitus. 1987. Biological activity of T7 transcripts of a prototype clone and a sequence variant clone of a satellite RNA of cucumber mosaic virus. Virology 159:199–208.CrossRefPubMedGoogle Scholar
  45. Owens, R.A. and I.R. Schneider. 1977. Satellite of tobacco ringspot virus lacks detectable mRNA activity. Virology 80:222–224.PubMedCrossRefGoogle Scholar
  46. Palukaitis, P. 1988. Pathogenicity regulation by satellite RNAs of cucumber mosaic virus: minor nucleotide sequence changes alter host responses. Mol. Plant-Microbe Interact. 1:175–181.PubMedGoogle Scholar
  47. Ponz, F., A. Rowhani, S.M. Mircetich, and G. Bruening. 1987. Cherry leafroll virus infections are affected by a satellite RNA that the virus does not support. Virology 160: 183–190.CrossRefGoogle Scholar
  48. Prody, G.A., J.T. Bakos, J.M. Buzayan, I.R. Schneider, and G. Bruening. 1986. Autolytic processing of dimeric plant virus satellite RNA. Science 231:1577–1580.CrossRefPubMedGoogle Scholar
  49. Rezaian, M.A., and R.H. Symons. 1986. Anti-sense regions in satellite RNA of cucumber mosaic virus form stable complexes with the viral coat protein gene. Nucleic Acids Res. 14:3230–3239.CrossRefGoogle Scholar
  50. Rezaian, M.A., R.H.V. Williams, and R.H. Symons. 1985. Nucleotide sequence of cucumber mosaic virus RNA 1. Presence of a sequence complementary to part of the viral satellite RNA and homologies with other viral RNAs. Eur. J. Biochem. 150:331–339.PubMedCrossRefGoogle Scholar
  51. Schneider, I.R. 1977. Defective plant viruses In: Beltsvill Symposia in Agricultural Research. I. Virology in Agriculture. (ed. J.A. Romberger) pp. 201–219. Allenheld, Osmun, Montclair, NJ.Google Scholar
  52. Simon, A.E., H. Engel, R. P. Johnson, and S.H. Howell. 1988a. Identification of determinants affecting virulence, RNA processing and infectivity in the virulent satellite of turnip crinkle virus. EMBO J. in press.Google Scholar
  53. Simon, A.E., H. Engel, and S.H. Howell. 1988b. Turnip crinkle virus satellite domains involved in virulence and processing. In: Molecular Biology of Plant Pathogen Interactions. (eds., B. Staskowicz, P. Ahlquist, and O. Yoder), UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 101 in press Alan R. Liss, Inc., New York, New York.Google Scholar
  54. Simon, A.E., and S.H. Howell. 1986. The virulent satellite RNA of turnip crinkle virus has a major domain homologous to the 3′ end of the helper virus genome. EMBO J. 5: 3423–3428.PubMedGoogle Scholar
  55. Simon, A.E., and S.H. Howell. 1987. Synthesisin vitro of infectious RNA copies of the virulent satellite of turnip crinkle virus. Virology 156:146–152.PubMedCrossRefGoogle Scholar
  56. Zaug, A.J. and T.R. Cech. 1986. The intervening sequence RNA ofTetrahymena is an enzyme. Science 231:470–475.PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Plant Molecular Biology 1988

Authors and Affiliations

  • Anne E. Simon
    • 1
  1. 1.Department of Plant PathologyUniversity of MassachusettsAmherstUSA

Personalised recommendations