Advertisement

Metallurgical Transactions A

, Volume 22, Issue 3, pp 739–752 | Cite as

Effect of sulfur removal on Al2O3 scale adhesion

  • James L. Smialek
Environment

Abstract

If the role of reactive element dopants in producing A12O3 scale adhesion on NiCrAl alloys is to getter sulfur and prevent interfacial segregation, then eliminating sulfur from undoped alloys should also produce adherence. Four experiments successfully produced scale adhesion by sulfur removal alone. (1) Repeated oxidation and polishing of a pure NiCrAl alloy lowered the sulfur content from 10 to 2 parts per million by weight (ppmw), presumably by removing the segregated interfacial layer after each cycle. Total scale spallation changed to total retention after 13 such cycles, with no changes in the scale or interfacial morphology. (2) Thinner samples became adherent after fewer oxidation polishing cycles because of a more limited supply of sulfur. (3) Spalling in subsequent cyclic oxidation tests of samples from experiment (1) was a direct function of the initial sulfur content. (4) Desulfurization to 0.1 ppmw levels was accomplished by annealing melt-spun foil in 1 arm H2. These foils produced oxidation weight change curves for 500 1-hour cycles at 1100 °C similar to those for Y- or Zr-doped NiCrAl. The transition between adherent and nonadherent behavior was modeled in terms of sulfur flux, sulfur content, and sulfur segregation.

Keywords

Metallurgical Transaction Sulfur Content Sulfur Removal Cyclic Oxidation Scale Adhesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Smialek and R. Browning: inHigh Temperature Materials Chemistry HI, Z.A. Munir and D. Cubicciotti, eds., Electrochemical Society, Pennington, NJ, 1986, pp. 258–72; also, NASA TM-87168.Google Scholar
  2. 2.
    D.P. Whittle and J. Stringer:Phil. Trans. R. Soc. London A, 1980, vol. 295, pp. 309–29.CrossRefGoogle Scholar
  3. 3.
    A.W. Funkenbusch, J.G. Smeggil, and N.S. Bornstein:Metall. Trans. A, 1985, vol. 16A, pp. 1164–66.Google Scholar
  4. 4.
    J.G. Smeggil, A.W. Funkenbusch, and N.S. Bornstein:Metall. Trans. A, 1986, vol. 17A, pp. 923–32.Google Scholar
  5. 5.
    J.L. Smialek:Oxidation of Metals and Associated Mass Transport, M.A. Dayananda, S.J. Rothman, and W.E. King, eds., TMS-AIME, Warrendale, PA, 1987, pp. 297–313.Google Scholar
  6. 6.
    J.L. Smialek:Corrosion and Particle Erosion at High Temperatures, V. Srinivasan and K. Vedula, eds., TMS-AIME, Warrendale, PA, 1989, pp. 425–57.Google Scholar
  7. 7.
    A.B. Anderson, S.P. Mehandru, and J.L. Smialek:J. Electrochem Soc, 1985, vol. 32, pp. 1695–1701.CrossRefGoogle Scholar
  8. 8.
    L.A. Larson, M. Prutton, H. Poppa, and J.L. Smialek:J. Vac. Sci. Technol., 1982, vol. 20, pp. 1403–05.CrossRefGoogle Scholar
  9. 9.
    M.M. El Gomati, C.G.H. Walker, D.C. Peacock, M. Prutton, H.E. Bishop, R.M.H. Hawes, and J. Smialek:Surf. Sci., 1985, vol. 152-153, pp. 917–24.CrossRefGoogle Scholar
  10. 10.
    M.M. El Gomati, C. Walker, D.C. Peacock, and M. Prutton:Corros. Sci., 1985, vol. 25, pp. 351–59.CrossRefGoogle Scholar
  11. 11.
    J.G. Smeggil:Mater. Sci. Eng., 1987, vol. 87, pp. 261–65.CrossRefGoogle Scholar
  12. 12.
    J.L. Smialek:Metall. Trans. A, 1987, vol. 18A, pp. 164–67.Google Scholar
  13. 13.
    D.G. Lees:Oxid. Met., 1987, vol. 27, pp. 75–81.CrossRefGoogle Scholar
  14. 14.
    D.R. Sigler:Oxid. Met., 1988, vol. 29, pp. 23–43.CrossRefGoogle Scholar
  15. 15.
    R.J. Hussey, P. Papaiacovou, D.F. Mitchell, and M.J. Graham: inCorrosion and Particle Erosion at High Temperatures, TMS-AIME, Warrendale, PA, 1989, pp. 567–82.Google Scholar
  16. 16.
    B.K. Tubbs and J.L. Smialek: inCorrosion and Particle Erosion at High Temperatures, TMS-AIME, Warrendale, PA, 1989, pp. 459–86.Google Scholar
  17. 17.
    T.P. Herbell:Int. J. Powder Metall., 1972, vol. 8, pp. 29–41.Google Scholar
  18. 18.
    J.K. Tien and F.S. Pettit:Metall. Trans., 1972, vol. 3, pp. 1587–99.CrossRefGoogle Scholar
  19. 19.
    C.S. Giggins and F.S. Pettit: ARL-TR-75-0234, PWA-5364, Pratt and Whitney Aircraft, East Hardford, CT, 1972; also available NTIS as No. AD-A024104.Google Scholar
  20. 20.
    K.P.R. Reddy, J.L. Smialek, and A.R. Cooper:Oxid. Met., 1982, vol. 17, pp. 429–49.CrossRefGoogle Scholar
  21. 21.
    J.L. Smialek and R. Gibala: inHigh Temperature Corrosion, NACE-6, R.A. Rapp, ed., NACE, Houston, TX, 1983, pp. 274–83.Google Scholar
  22. 22.
    J.L. Smialek and R. Gibala:Metall. Trans. A, 1983, vol. 14A, pp. 2143–61.Google Scholar
  23. 23.
    K.L. Luthra and C.L. Briant:Oxid. Met., 1988, vol. 30, pp. 257–59.CrossRefGoogle Scholar
  24. 24.
    J.G. Smeggil, A.W. Funkenbush, and N.S. Bornstein:Thin Solid Films, 1984, vol. 119, pp. 327–35.CrossRefGoogle Scholar
  25. 25.
    J.G. Smeggil, A.W. Funkenbusch, and N.S. Bornstein:High Temp. Sci., 1985, vol. 20, pp. 163–82.Google Scholar
  26. 26.
    T. Miyahara, K. Stolt, D.A. Reed, and H.K. Birnbaum:Scripta Metall., 1985, vol. 19, pp. 117–21.CrossRefGoogle Scholar
  27. 27.
    C.G.H. Walker and M.M. El Gomati:Appl. Surf. Sci., 1988/1989, vol. 35, pp. 164–72.CrossRefGoogle Scholar
  28. 28.
    D. McClean:Grain Boundaries in Metals, Clarendon Press, Oxford, United Kingdom, 1957, pp. 126–29.Google Scholar
  29. 29.
    G.H. Geiger and D.R. Poirier:Transport Phenomena in Metallurgy, Addison-Wesley, Reading, MA, 1973, pp. 486–87.Google Scholar
  30. 30.
    P. Marcus and J. Oudar: inFundamental Aspects of Corrosion Protection by Surface Modification, E. McCafferty, C.R. Clayton, and J. Oudar, eds., Electrochemical Society, Pennington, NJ, 1984, pp. 173–93.Google Scholar
  31. 31.
    A. Steiner and K.L. Komarek:Trans. TMS-AIME, 1964, vol. 230, pp. 786–90.Google Scholar
  32. 32.
    K.L. Luthra and C.L. Briant:Oxid. Met., 1986, vol. 26, pp. 397–416.CrossRefGoogle Scholar
  33. 33.
    C.L. Briant and K.L. Luthra:Metall. Trans. A, 1988, vol. 19A, pp. 2099–2108.Google Scholar
  34. 34.
    R. Browning, C. Park, F.A. Marks, and J.L. Smialek: NASA Ames Research Center, Moffett Field, CA, unpublished work, 1984; data presented in Reference 1.Google Scholar
  35. 35.
    F. Ferhat, D. Roptin, and G. Saindrenan:Scripta Metall., 1988, vol. 22, pp. 223–27.CrossRefGoogle Scholar
  36. 36.
    B. Ladna and H.K. Birnbaum:Acta Metall., 1988, vol. 36, pp. 745–55.CrossRefGoogle Scholar
  37. 37.
    J.G. Smeggil and G.G. Peterson:Oxid. Met., 1988, vol. 29, pp. 103–19.CrossRefGoogle Scholar
  38. 38.
    J.L. Smialek: inHigh Temperature Materials Chemistry IV, Z. A. Munir, D. Cubicciotti, and H. Tagawa, eds., Electrochemical Society, Pennington, NJ, 1988, pp. 241–53.Google Scholar
  39. 39.
    J.G. Smeggil, E.L. Paradis, A.J. Shuskus, and N.S. Bornstein:J. Vac. Sci. Technol. A, 1985, vol. 3A, pp. 2569–73.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1991

Authors and Affiliations

  • James L. Smialek
    • 1
  1. 1.NASA Lewis Research CenterCleveland

Personalised recommendations