Metallurgical Transactions A

, Volume 20, Issue 12, pp 2841–2845

The microstructure of rapidly solidified Ti-Fe melt-spun ribbons

  • I. Levi
  • D. Shechtman


Ti-Fe binary alloys were rapidly solidified by the melt-spinning technique, and four compositions were examined: Ti-5 wt pct Fe, which is the critical composition for theβ to ω athermal transformation; Ti-10 wt pct Fe, which represents a hypoeutectoid composition; the eutectoid composition Ti-15 wt pct Fe; and Ti-20 wt pct Fe, as an example of a hypereutectoid alloy. The Ti-5 wt pct Fe rapidly solidified ribbons are composed of two different structures. The first consists of α′-martensite plates inβ matrix and the second, athermal ω particles inβ matrix. The Ti-10, 15, and 20 wt pct Fe alloys are also composed of two structures. These areβ grains and isothermal-like ω particles inβ matrix. A solidification model is suggested which explains the existence of two different microstructures at the same composition and the for-mation of two kinds of ω particles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Cohen, B.H. Kear, and R. Mehrabian:Rapid Solidification, Principles and Technologies II, R. Mehrabian, B.H. Kear, and M. Cohen, eds., Claitors, Baton Rouge, LA, 1980, pp. 1–23.Google Scholar
  2. 2.
    J.L. Murray:Bull. Alloy Phase Diagrams, 1981 vol 2 (3) pp. 320–34.Google Scholar
  3. 3.
    S. Krishnamurthy, R.G. Vogt, D. Eylon, and F.H. Froes:Mater. Res. Soc. Symp. Proc, B.H. Kear and B.C. Giessen, eds., Elsevier Science Publishing Company, Inc., New York, NY 1984 vol 28 pp. 361–67.Google Scholar
  4. 4.
    W.A. Baeslack, III, L. Weeler, S. Krishnamurthy, P. Smith, and F.H. Froes:Mater. Res. Soc. Symp. Proc, B.H. Kear and B.C. Giessen, eds., Elsevier Science Publishing Company, Inc., New York, NY, 1984, vol. 28, pp. 375–79.Google Scholar
  5. 5.
    T.W. Duerig, G.T. Terlinde, and J.C. Williams:Ti-80 Sci. and Tech., H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale PA, 1981, pp. 1299–305.Google Scholar
  6. 6.
    D. de Fontaine, N.E. Paton, and J.C. Williams:Acta Metall 1971, vol. 19, pp. 1153–62.CrossRefGoogle Scholar
  7. 7.
    R.C. Ruhl:Mater. Sci. Eng., 1967, vol. 1, pp. 313–20.CrossRefGoogle Scholar
  8. 8.
    J.C. Williams:Ti Sci. and Tech., R.I. Jaffee and H.M. Burte, eds., Plenum Press, New York, NY, 1973, vol. 3 pp. 1433–94.Google Scholar
  9. 9.
    A.J. Perkins, P.E. Yaffee, and R.F. Hehemann:Metall. Trans, 1970, vol. 1, pp. 2785–90.Google Scholar
  10. 10.
    N.E. Patton, D. de Fontaine, and J.C. Williams:Proc. 29th An- nual EMSA Meeting, C.J. Arceneaux, ed., Claitors Publishing Div., Baton Rouge, LA, 1971, pp. 122–25.Google Scholar
  11. 11.
    S.L. Sass:Acta Metall., 1969, vol. 17, pp. 813–20.CrossRefGoogle Scholar
  12. 12.
    M.J. Blackburn:Sci., Technol. Appl. Titanium, Proc. Int. Conf., R.I. Jaffee and N.E. Promisel, eds., Pergamon Press, Oxford 1970, pp. 633–43.Google Scholar
  13. 13.
    V.N. Moiseev:Met. Sci. Heat Treat. (Engt. Transi.), 1969, vol. 5 pp. 335–39.CrossRefGoogle Scholar
  14. 14.
    M.M. Stupel, M. Ron, and B.Z. Weiss:J. Appl. Phys., 1976, vol. 47 (1), pp. 6–12.CrossRefGoogle Scholar
  15. 15.
    L.N. Guseva and L.K. Dolinskaya:Russ. Metall. (Engl. Transi.), 1974, vol. 6, pp. 155–59.Google Scholar
  16. 16.
    B.S. Hickman:TMS-AIME, 1969, vol. 245, pp. 1329–35.Google Scholar
  17. 17.
    J.C. Williams and M.J. Blackburn:TMS-AIME, 1969, vol. 245, pp. 2352–55.Google Scholar

Copyright information

© The Metallurgical Society of AIME 1989

Authors and Affiliations

  • I. Levi
    • 1
  • D. Shechtman
    • 1
  1. 1.Department of Materials EngineeringTechnionIsrael

Personalised recommendations