Advertisement

Metallurgical Transactions A

, Volume 22, Issue 9, pp 2039–2048 | Cite as

Effect of processing variables on texture and texture gradients in tantalum

  • J. B. Clark
  • R. K. Garrett
  • T. L. Jungling
  • R. A. Vandermeer
  • C. L. Vold
Mechanical Behavior

Abstract

The effect of processing variables on the development of texture in commercially processed tantalum for deep drawing applications was investigated. Orientation distribution functions (ODFs) showed that tantalum processed with a deformation zone parameter less than one, after rolling and recrystallization, had a desirable {111}<uvw> fiber texture through the plate thickness and also a fine grain size. For tantalum rolled with a deformation zone parameter greater than one and recrystallized, severe texture gradients formed which influenced the final recrystallized grain size. Orientation distribution function analysis indicated that a strong {001}(110) orientation developed in cross-rolled and recrystallized tantalum. The influence of processing variables on the final recrystallized texture and microstructure is discussed, but the deep drawability of the textured tantalum is not described.

Keywords

Metallurgical Transaction Tantalum Ferritic Stainless Steel Fiber Texture Texture Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.A. Vandermeer and W.B. Snyder, Jr.:Metall. Trans. A, 1979, vol. 10A, pp. 1031–44.Google Scholar
  2. 2.
    J.W. Pugh and W.R. Hibbard, Jr.:Trans. ASM, 1955, vol. 48, pp. 526–39.Google Scholar
  3. 3.
    W.T. Lankford, S.C. Snyder, and J.A. BauschenTrans. Am. Soc. Min. Eng., 1950, vol. 42, pp. 1197–1232.Google Scholar
  4. 4.
    H. Hu:Texture, 1974, vol. 1, pp. 233–58.CrossRefGoogle Scholar
  5. 5.
    J.A. Salsgiver, T.H. Shen, S.D. Washko, and K. Lucke:ICOTOM 8th Int. Conf. on Textures of Materials, TMS, Warrendale, PA, 1987, pp. 1065–70.Google Scholar
  6. 6.
    U. Von Schlippenbach, F. Emren, and K. Lucke:Acta Metall., 1986, vol. 34 (7), pp. 1289–1301.Google Scholar
  7. 7.
    F. Emren, U. Von Schlippenbach, and K. Lucke:Acta Metall., 1986, vol. 34 (11), pp. 2105–17.Google Scholar
  8. 8.
    Annual Book of ASTM Standards, El 12-85, ASTM, Philadelphia, PA, 1987, vol. 3.01, pp. 403-36.Google Scholar
  9. 9.
    J.S. Kallend, U.F. Kocks, A.D. Rollett, and H.R. Wenk:Proc. ICOTOM 9, Avignon, France, 1990.Google Scholar
  10. 10.
    I.L. Dillamore and H. Katoh: BISRA Open Report, MG/39/71.Google Scholar
  11. 11.
    W.A. Backofen:Deformation Processing, Addison-Wesley Publishing Co., Reading, MA, 1972, pp. 88–90.Google Scholar
  12. 12.
    R.A. Vandermeer and J.C. Ogle:Trans. TMS-AIME, 1969, vol. 245, pp. 1511–18.Google Scholar
  13. 13.
    R.A. Vandermeer and J.B. Bernai:Texture of Crystalline Solids, 1977, vol. 2, pp. 183–203.Google Scholar
  14. 14.
    P.S. Mathur and W.A. Backofen:Metall. Trans., 1973, vol. 4, pp. 643–51.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1991

Authors and Affiliations

  • J. B. Clark
    • 1
  • R. K. Garrett
    • 1
  • T. L. Jungling
    • 2
  • R. A. Vandermeer
    • 3
  • C. L. Vold
    • 3
  1. 1.Naval Surface Warfare CenterSilver Spring
  2. 2.Plant Apparatus DivisionWestinghouse, Monroeville
  3. 3.Naval Research Laboratory

Personalised recommendations