Metallurgical Transactions A

, Volume 24, Issue 1, pp 35–42 | Cite as

Strength and electrical conductivity of deformation-processed Cu-15 Vol Pct Fe alloys produced by powder metallurgy techniques

  • G. A. Jerman
  • I. E. Anderson
  • J. D. Verhoeven
Symposium on High Performance Copper-Base Materials


Powder metallurgical techniques have been employed to prepare the precursor billets in the preparation of Cu-15 vol pct Fe alloys by deformation processing. It has been demonstrated that by (1) using high-purity gas-atomized Cu powders blended with commercial high-purity Fe powders and (2) controlling the time/temperature processing conditions within specific limits, it is possible to produce Cu-Fe deformation-processed alloys with strength/conductivity properties matching those of Cu-Nb, Cu-Ta, and Cu-Cr alloys. These properties are significantly superior to the best commercial alloys.


Metallurgical Transaction Deformation Strain International Anneal Copper Standard Final Consolidation Filament Coarsening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Verhoeven, W.A. Spitzig, L.L. Jones, H.L. Downing, C.L. Trybus, E.D. Gibson, L.S. Chumbley, L.G. Fritzemeier, and G.D. Schnittgrund:J. Mater. Eng., 1990, vol. 12, pp. 127–39.Google Scholar
  2. 2.
    A. Guha:High Conductivity Copper and Aluminum Alloys, D. Ling and P.W. Taubenblat, eds., TMS-AIME, Warrendale, PA, 1984, pp. 133–46.Google Scholar
  3. 3.
    W.A. Spitzig, CL. Trybus, and J.D. Verhoeven:Metal Matrix Composites: Processing and Interfaces, R.K. Everett and R.J. Arsenault, eds., Academic Press Inc., London, 1991, ch. 7.Google Scholar
  4. 4.
    W. Hodge, R.I. Jaffee, J.G. Dunleavy, and H.R. Odgen:Trans. TMS-AIME, 1949, vol. 180, pp. 15–24.Google Scholar
  5. 5.
    J.D. Verhoeven, S.C Chueh, and E.D. Gibson:J. Mater. Sci., 1989, vol. 24, pp. 1748–52.CrossRefGoogle Scholar
  6. 6.
    P.D. Funkenbusch and T.H. Courtney:Scripta Metall., 1981, vol. 15, pp. 1349–54.CrossRefGoogle Scholar
  7. 7.
    M. Hansen and K. Anderko:Constitution of Binary Alloys, 2nd ed., McGraw-Hill, New York, NY, 1958, p. 580.Google Scholar
  8. 8.
    A. Boltax:Trans. TMS-AIME, 1960, vol. 218, pp. 812–21.Google Scholar
  9. 9.
    Y.S. Go and W.A. Spitzig:J. Mater. Sci., 1991, vol. 26, pp. 163–71.CrossRefGoogle Scholar
  10. 10.
    W.A. Spitzig, Y.S. Go, L.S. Chumbley, H.L. Downing, and J.D. Verhoeven:J. Mater. Sci., 1991, in press.Google Scholar
  11. 11.
    I.E. Anderson, R.S. Figliola, and H. Morton:Mater. Sci. Eng. A, Report A148, 1991, pp. 101-14.Google Scholar
  12. 12.
    J.D. Verhoeven, L.S. Chumbley, F.C. Laabs, and W.A. Spitzig:Acta Metall. and Mater., 1991, vol. 39, pp. 2825–34.CrossRefGoogle Scholar
  13. 13.
    J.D. Verhoeven, H.L. Downing, L.S. Chumbley, and E.D. Gibson:J. Appl. Phys., 1989, vol. 65, pp. 1293–1301.CrossRefGoogle Scholar
  14. 14.
    G.A. Jerman: M.S. Thesis, Iowa State University, Ames, IA, 1991.Google Scholar
  15. 15.
    K.R. Karasek and J. Bevk:J. Appl. Phys., 1981, vol. 52, pp. 1370–75.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1993

Authors and Affiliations

  • G. A. Jerman
    • 1
  • I. E. Anderson
    • 2
  • J. D. Verhoeven
    • 2
  1. 1.NASA, Marshall Space Flight CenterAL
  2. 2.Department of Materials Science and Engineering and Ames LaboratoryIowa State UniversityAmes

Personalised recommendations