Metallurgical and Materials Transactions A

, Volume 26, Issue 10, pp 2707–2718 | Cite as

Evolution of microstructure during fabrication of Zr-2.5 Wt pct Nb alloy pressure tubes

  • D. Srivastava
  • G. K. Dey
  • S. Banerjee


Microstructural changes occurring during the fabrication of Zr-2.5 pct Nb alloy pressure tubes by a modified route, involving hot extrusion followed by two pilgering operations with an intermediate annealing step, have been examined in detail. In the conventional fabrication route, the hot extrusion step is followed by a single cold drawing operation in which the cold work to the extent of 25 pct is imparted to the material for achieving the required mechanical properties. Tensile properties obtained at each stage of fabrication have been evaluated and compared between the two processes. The main aim of this work has been to produce a microstructure and texture which are known to yield a lower irradiation growth. Additionally, suitable annealing conditions have been optimized for the intermediate annealing which annihilates the cold work introduced by the first cold pilgering operation without disturbing the two-phase elongated microstructure. This elongated α+ β I microstructure is required for obtaining the desired level of strength at 310 °C. The final microstructure and the crystallographic texture of the finished pressure tube have been compared with those reported for the conventionally processed material.


Martensite Material Transaction Crystallographic Texture Scanning Electron Micro Pressure Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.A. Cheadle, C.E. Coleman, and H. Licht:Nucl. Technol, 1982, vol. 57, pp. 413–25.CrossRefGoogle Scholar
  2. 2.
    R.G. Fleck, E.G. Price, and B.A. Cheadle:Zirconium in the Nuclear Industry, ASTM STP 824, D.G. Franklin and R.B. Actamson, eds., ASTM, Philadelphia, PA, 1984, pp. 88–105.CrossRefGoogle Scholar
  3. 3.
    B.A. Cheadle:Zirconium in the Nuclear Industry, ASTM STP 633, A.L. Lowe, Jr. and G.W. Parry, eds., ASTM, Philadelphia, PA, 1977, pp. 457–85.CrossRefGoogle Scholar
  4. 4.
    R.A. Holt:J. Nucl. Mater., 1979, vol. 82, pp. 419–29.CrossRefGoogle Scholar
  5. 5.
    R.G. Fleck:Can. Metall. Q., 1979, vol. 18, p. 65.CrossRefGoogle Scholar
  6. 6.
    E.F. Ibrahim and R.A. Holt:J. Nucl. Mater., 1980, vol. 91, pp. 311- 21.Google Scholar
  7. 7.
    R.A. Holt and E.F. Ibrahim:Acta Metall., 1979, vol. 27, pp. 1319- 28.CrossRefGoogle Scholar
  8. 8.
    V. Perovic, G.C. Weatherly, and C.J. Simpson:Acta Metall., 1983, vol. 31, pp. 1381–91.CrossRefGoogle Scholar
  9. 9.
    V. Perovic, G.C. Weatherly, and R.G. Fleck:Can. Metall. Q., 1985, vol. 24, pp. 253–57.CrossRefGoogle Scholar
  10. 10.
    E. Tenchhoff:Deformation Mechanism, Texture, and Anisotropy in Zirconium and Zircaloy, ASTM STP-966, ASTM, Philadelphia, PA, 1980.Google Scholar
  11. 11.
    J.P. Abriata and J.C. Bolcich:Bull. Alloy Phase Diagrams, 1982, vol. 3, pp. 34–44.CrossRefGoogle Scholar
  12. 12.
    Sarath Kumar Menon, S.K. Banerjee, and Rangachari Krishnan:Metall. Trans. A, 1978, vol. 9A, pp. 1213–20.CrossRefGoogle Scholar
  13. 13.
    V. Perovic and G.C. Weatherly:Acta Metall., 1989, vol. 37, pp. 813- 21.CrossRefGoogle Scholar
  14. 14.
    S. Banerjee, G.K. Dey, and S.J. Vijayakar:Int. Proc. Indo-American Workshop on Interface, Oxford and IBH Publishing Co., New Delhi, India, 1990.Google Scholar
  15. 15.
    C.P. Luo and G.C. Weatherly:Metall. Trans. A, 1988, vol. 19A, pp. 1153–62.CrossRefGoogle Scholar
  16. 16.
    S. Banerjee and R. Krishnan:Acta Metall., 1971, vol. 19, pp. 1317- 26.CrossRefGoogle Scholar
  17. 17.
    CD. Williams and R.W. Gilbert:J. Nucl. Mater., 1966, vol. 18, pp. 161–66.CrossRefGoogle Scholar
  18. 18.
    D. Srivastava, K. Madangopal, S. Banerjee, and S. Ranganathan:Acta Metall. Mater., 1993, vol. 41, pp. 1445–54.CrossRefGoogle Scholar
  19. 19.
    J.K. Chakravartty, G.K. Dey, and S. Banerjee:Materials Sci. and Tech., 1995, (In press).Google Scholar
  20. 20.
    S.L. Sass: ONR Technical Report ’62 Contract No. N00014-67-A- 0077-0012, 1971.Google Scholar
  21. 21.
    R.F. Hehemann:Can. Metall. Q., 1972, vol. 11, pp. 201–12.CrossRefGoogle Scholar
  22. 22.
    R. Strychor and J.C. Williams:Solid-Solid Phase Transformations, H.I. Aaranson, D. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS, Pittsburgh, PA, 1981, pp. 249–53.Google Scholar
  23. 23.
    L.A. Benderskey, W.J. Boettinger, R.P. Burton, F.I. Biancaniello, and C.B. Shoemaker:Acta Metall. Mater., 1990, vol. 38, pp. 931—43.Google Scholar
  24. 24.
    B.A. Cheadle, C.E. Ells, and W. Evans:J. Nucl. Mater., 1967, vol. 24, pp. 199–208.CrossRefGoogle Scholar
  25. 25.
    A.J. Haq, A. Haq, and S. Banerjee:Bull. Mater. Sci., 1992, vol. 15, pp. 289–96.CrossRefGoogle Scholar
  26. 26.
    E.F. Ibrahim and B.A. Cheadle:Can. Metall. Q., 1985, vol. 24, pp. 273–81.CrossRefGoogle Scholar
  27. 27.
    E.F. Ibrahim:J. Nucl. Mater., 1983, vol. 118, pp. 260–68.CrossRefGoogle Scholar
  28. 28.
    G.B. Harris:Phil. Mag., 1952, vol. 43, pp. 113–23.CrossRefGoogle Scholar
  29. 29.
    E. Hornbogen,Int. Mater. Rev., 1989, vol. 34, pp 277–296.CrossRefGoogle Scholar
  30. 30.
    W.G. Burgers:Physica, 1930, vol. 1, pp. 561–86.CrossRefGoogle Scholar
  31. 31.
    D.I. Potter:J. Less-Common Met, 1973, vol. 31 p. 299.CrossRefGoogle Scholar
  32. 32.
    H.M. Otte:The Science Technology and Application of Titanium, R.I. Jaffee and N.E. Promisel, eds., Pergamon, London, 1970, pp. 645–57.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Material Society 1995

Authors and Affiliations

  • D. Srivastava
    • 1
  • G. K. Dey
    • 1
  • S. Banerjee
    • 1
  1. 1.Metallurgy DivisionBhabha Atomic Research Center BARCIndia

Personalised recommendations