Advertisement

Metallurgical and Materials Transactions A

, Volume 26, Issue 10, pp 2677–2685 | Cite as

Effect of aging on fatigue crack growth at sn-pb/cu interfaces

  • Daping Yao
  • J. K. Shang
Electronic, Magnetic & Optical Material

Abstract

The effect of isothermal aging on fatigue crack growth behavior at the Sn-Pb solder/Cu interface was examined, with emphasis on the role of interfacial microstructure. Flexural peel interface-crack specimens were made from the joints of eutectic Sn-Pb solder and Cu and were further aged at 443 K for 7 and 30 days. Kinetics of fatigue crack growth along the solder/Cu interfaces were measured from flexural peel specimens as a function of strain energy release rate. Aging was found to induce not only microstructural changes in the solder and at the interface, but also degradation in fatigue crack growth resistance of the interface from the fatigue threshold to the fast fracture. The fatigue threshold decreased from 25 to 20 J/m2 after aging for 7 days and to 10 J/m2 following aging for 30 days. The degradation in the fatigue crack growth resistance is related to the formation of a Pbrich layer at the interface.

Keywords

Material Transaction Fatigue Crack Solder Joint Fatigue Crack Growth Fatigue Crack Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Solder Mechanics—A State of the Art Assessment, D.R. Frear, W.B. Jones, and K.R. Kinsman, eds., TMS, Warrendale, PA, 1991.Google Scholar
  2. 2.
    Solder Joint Reliability: Theory and Applications, J.H. Lau, ed., Van Nostrand Reinhold, New York, NY, 1991.CrossRefGoogle Scholar
  3. 3.
    The Mechanics of Solder Alloy Interconnects, D.R. Frear, S.N. Burchett, H.S. Morgan, and J.H. Lau, eds., Van Nostrand Reinhold, New York, NY, 1994.Google Scholar
  4. 4.
    R.N. Wild:Weld. J., Weld. Res. Suppl, 1972, vol. 51, pp. 521-S-526-S.Google Scholar
  5. 5.
    E.R. Bangs and R.E. Beal:Weld. J., Weld. Res. Suppl., 1975, vol. 54, pp. 377-S-383-S.Google Scholar
  6. 6.
    D.R. Frear, D. Grivas, and J.W. Morris, Jr.:J. Electron. Mater, 1988, vol. 17, pp. 171–80.CrossRefGoogle Scholar
  7. 7.
    D.R. Frear, D. Grivas, and J.W. Morris, Jr.:J. Met., 1988, vol. 40 (6), pp. 18–22.Google Scholar
  8. 8.
    D.R. Frear, D. Grivas, and J.W. Morris, Jr.:J. Electron. Mater., 1989, vol. 18, pp. 671–80.CrossRefGoogle Scholar
  9. 9.
    D.R. Frear:IEEE Trans. Comp. Hybrids, Manuf. Technol, 1989, vol. 12, pp. 492–501.CrossRefGoogle Scholar
  10. 10.
    D. Tribula, D. Grivas, D.R. Frear, and J.W. Morris, Jr.:ASME J. Electron. Packag., 1989, vol. 111, pp. 83–89.CrossRefGoogle Scholar
  11. 11.
    R. Satoh, K. Arakawa, M. Harada, and K. Matsui:IEEE Trans. Comp. Hybrids, Manuf. Technol., 1991, vol. 14, pp. 224–32.CrossRefGoogle Scholar
  12. 12.
    J. Seyyedi:ASME J. Electron. Packag., 1993, vol. 115, pp. 305–11.CrossRefGoogle Scholar
  13. 13.
    N.F. Enke, T.J. Kilinski, S.A. Schroeder, and J.R. Lesniak:IEEE Trans. Comp. Hybrids, Manuf. Technol., 1989, vol. 12, pp. 459–68.CrossRefGoogle Scholar
  14. 14.
    T.S.E. Summers and J.W. Morris, Jr.:ASME J. Electron. Packag., 1990, vol. 112, pp. 94–99.CrossRefGoogle Scholar
  15. 15.
    Z. Mei and J.W. Morris, Jr.:ASME J. Electron. Packag., 1992, vol. 114, pp. 104–08.CrossRefGoogle Scholar
  16. 16.
    Z. Guo, A.F. Sprecher, and H. Conrad:ASME J. Electron. Packag., 1992, vol. 114, pp. 112–17.CrossRefGoogle Scholar
  17. 17.
    Z. Guo and H. Conrad:ASME J. Electron. Packag., 1993, vol. 115, pp. 159–64.CrossRefGoogle Scholar
  18. 18.
    W. Engelmaier:IEEE Trans. Comp. Hybrids, Manuf. Technol., 1983, vol. CHMT-6, pp. 232–37.CrossRefGoogle Scholar
  19. 19.
    R. Subrahmanyan, J.R. Wilcox, and C.-Y. Li:IEEE Trans. Comp. Hybrids, Manuf. Technol., 1989, vol. 12, pp. 480–91.CrossRefGoogle Scholar
  20. 20.
    Y.-H. Pao:IEEE Trans. Comp. Hybrids, Manuf. Technol., 1992, vol. 15, pp. 559–70.CrossRefGoogle Scholar
  21. 21.
    H.D. Solomon:IEEE Trans. Comp. Hybrids, Manuf. Technol., 1986, vol. CHMT-9, pp. 423–32.CrossRefGoogle Scholar
  22. 22.
    E.C. Cutiongco, S. Waynman, M.E. Fine, and D.A. Jeannnotte:ASME J. Electron. Packag., 1990, vol. 112, pp. 110–14.CrossRefGoogle Scholar
  23. 23.
    W.A. Logsdon, P.K. Liaw, and M.A. Burke:Eng. Fract. Mech., 1990, vol. 36, pp. 183–218.CrossRefGoogle Scholar
  24. 24.
    P.K. Liaw and M.A. Burke:Scripta Metall, 1989, vol. 23, pp. 747- 52.CrossRefGoogle Scholar
  25. 25.
    S.-M. Lee and D.S. Stone:ASME J. Electron. Packag., 1992, vol. 114, pp. 118–21.CrossRefGoogle Scholar
  26. 26.
    R.K. Govila, Y.-H. Pao, C. Lamer, J. Lau, S. Twerefour, S. Erasmus, and S. Dolot:ASME J. Electron. Packag., 1994, vol. 116, pp. 184- 90.CrossRefGoogle Scholar
  27. 27.
    Z. Zhang and J.K. Shang:Metall. Mater. Trans. A, in press, 1995.Google Scholar
  28. 28.
    L. Zakraysek:Weld. J., Weld. Res. Suppl, 1972, vol. 51, pp. 536-S-541xxS.Google Scholar
  29. 29.
    P.L. Blum, J. Pelissier, and G. Silvestre:Solid State Technol, 1973, vol. 16 (3), pp. 55–58.Google Scholar
  30. 30.
    K.N. Tu:Acta Metall, 1973, vol. 21, pp. 347–54.CrossRefGoogle Scholar
  31. 31.
    D. Frear, D. Grivas, and J.W. Morris, Jr.:J. Electron. Mater., 1987, vol. 16, pp. 181–86.CrossRefGoogle Scholar
  32. 32.
    P.T. Vianco, P.F. Hlava, and A.C. Kilgo:J. Electron. Mater., 1994, vol. 23, pp. 583–94.CrossRefGoogle Scholar
  33. 33.
    P.T. Vianco, K.L. Erickson, and P.L. Hopkins:J. Electron. Mater., 1994, vol. 23, pp. 721–27.CrossRefGoogle Scholar
  34. 34.
    D.R. Frear and P.T. Vianco:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1509–23.CrossRefGoogle Scholar
  35. 35.
    C.H. Raeder, L.E. Felton, V.A. Tanzi, and D.B. Knorr:J. Electron. Mater., 1994, vol. 23, pp. 611–17.CrossRefGoogle Scholar
  36. 36.
    B.T. Lamp:Weld. J., Weld. Res. Suppl, 1976, vol. 55 (10), pp. 330-S-340-S.Google Scholar
  37. 37.
    C. Wright:IEEE Trans. Parts, Hybrids and Packag., 1977, vol. PHP-13, pp. 202–07.CrossRefGoogle Scholar
  38. 38.
    C.J. Thwaites:Circuit World, 1984, vol. 11 (1), pp. 8–12.CrossRefGoogle Scholar
  39. 39.
    D. Yao and J.K. Shang: University of Illinois at Urbana-Champaign, Urbana, IL, unpublished research, 1995.Google Scholar
  40. 40.
    A.G. Evans and J.W. Hutchinson:Acta Metall, 1989, vol. 37, pp. 909–16.CrossRefGoogle Scholar
  41. 41.
    H.C. Cao and A.G. Evans:Mech. Mater., 1989, vol. 7, pp. 295–304.CrossRefGoogle Scholar
  42. 42.
    S.K. Kang, N.D. Zommer, D.L. Feucht, and R.W. Heckel:IEEE Trans. Parts, Hybrids and Packag., 1977, vol. PHP-13, pp. 318–21.CrossRefGoogle Scholar
  43. 43.
    H.N. Keller:IEEE Trans. Comp. Hybrids, Manuf. Technol, 1979, vol. CHMT-2, pp. 180–95.CrossRefGoogle Scholar
  44. 44.
    H.N. Keller:IEEE Trans. Comp. Hybrids, Manuf. Technol, 1981, vol. CHMT-4, pp. 132–39.CrossRefGoogle Scholar
  45. 45.
    P.M. Hall:IEEE Trans. Comp. Hybrids, Manuf. Technol, 1981, vol. CHMT-4, pp. 403–10.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Material Society 1995

Authors and Affiliations

  • Daping Yao
    • 1
  • J. K. Shang
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbana

Personalised recommendations