Advertisement

Journal of Phase Equilibria

, Volume 15, Issue 3, pp 339–347 | Cite as

Application of reaction calorimetry to metallic systems

  • R. Castanet
Article

Abstract

The application of reaction calorimetry to metallic systems is examined. Different commonly used procedures and their respective fields of application are described: (a) direct and indirect drop method with flow calorimeters, (b) solid-solid reaction calorimetry (Kleppa's and Gachon's methods), (c) dissolution calorimetry in metallic baths, and (d) precipitation calorimetry. Some examples of results on binary and ternary alloys are given as illustrations: (a) the determination of the enthalpies of formation of metallic melts with respect to concentration and temperature, (b) the measurements of the enthalpy of formation of solid compounds, and (c) the determination of phase boundaries from isothermal reaction calorimetry.

Keywords

Enthalpy Solid Compound Solid Alloy Partial Enthalpy Integral Enthalpy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited References

  1. 1.
    Certificate Standard Ref. Material 720, Synthetic Sapphire, U.S. Dept. of Comm., National Bureau of Standards, Washington, D.C., 1982.Google Scholar
  2. 2.
    R. Castanet,J. Chem. Thermodyn., 11,787 (1979).CrossRefGoogle Scholar
  3. 3.
    H. Said and R. Castanet,High Temp.—High Press., 10,681 (1978).Google Scholar
  4. 4.
    R. Lbibb and R. Castanet,Can. Metall. Q., 32,335 (1993).CrossRefGoogle Scholar
  5. 5.
    C. Bergman, R. Chastel, M. Gilbert, R. Castanet, and J.C. Mathieu,J.Phys.,41,591 (1980).CrossRefGoogle Scholar
  6. 6.
    G.R. Gathers, J.W. Shammer, and R.L. Brier,Res. Sci. Instrum., 47, 471 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    O. Kubaschewski and W.A. Dench,Acta Metall., 3,339 (1955).Google Scholar
  8. 8.
    W.A. Dench,Trans. Faraday Soc., 59,1279 (1963).CrossRefGoogle Scholar
  9. 9.
    O. Kubaschewski and J. Grundman,Ber. Bunsenges. Phys. Chem., 87,1239(1977).CrossRefGoogle Scholar
  10. 10.
    R. Ferro and R. Capelli,Atti Accad. Nat Lincei, 34,659 (1963).Google Scholar
  11. 11.
    R. Ferro, R. Capelli, and A. Borsese,Thermochim. Acta, 10, 13 (1974).CrossRefGoogle Scholar
  12. 12.
    D. A. Robins and J. Jenkins,Acta Metall., 3,598 (1955).CrossRefGoogle Scholar
  13. 13.
    J.C.Gachon,J.Giner,andJ.Hertz,Scr.Metall., 15,981 (1981).CrossRefGoogle Scholar
  14. 14.
    J.C. Gachon and J. Hertz,Calphad, 7,1 (1983).CrossRefGoogle Scholar
  15. 15.
    J.C. Gachon, Doct. Sci. Phys., Nancy, France, 1986.Google Scholar
  16. 16.
    R. Castanet and F. Sorrentino, Proc. 8th International Congress on the Chemistry of Cement, Rio de Janeiro, Brazil, Institute of Electri- cal and Electronics Engineers, Inc., 1986.Google Scholar
  17. 17.
    F. Ayed, R. Castanet, and F. Sorrentino, Proc. 9th International Con- gress on the Chemistry of Cement, New Delhi, India, Institute of Electrical and Electronics Engineers, Inc., 1990.Google Scholar
  18. 18.
    L.B. Ticknor and M-B.Bever,J.Met.,4,941 (1952).Google Scholar
  19. 19.
    O.J. Kleppa,J.Phys. Chem.,59,354(1955).CrossRefGoogle Scholar
  20. 20.
    O.J. Kleppa,J. Phys. Chem., 60,842 (1956).CrossRefGoogle Scholar
  21. 21.
    F. Meyer-Lieutaud, C.H. Allibert, and R. Castanet,J. Less-Common Met., 127,243 (1987).CrossRefGoogle Scholar
  22. 22.
    F. Meyer-Lieutaud, S. Drekoui, C.H. Allibert, and R. Castanet,J. Less-Common Met., 127,231 (1987).CrossRefGoogle Scholar
  23. 23.
    J.C. Mathieu, B. Jounel, P. Desré, and E. Bonnier, Proc. IAEA Sym- posium, Thermodyn. Nucl. Mater., Vienna, International Atomic Energy Agency, 1967.Google Scholar
  24. 24.
    M.G. Benz and J.F. Elliott,Trans. Metall. Soc. AIME, 230, 706 (1964).Google Scholar
  25. 25.
    R.D. Dokken and J.F. Elliott,Trans. Metall. Soc. AIME, 233,1351 (1965).Google Scholar
  26. 26.
    F. Wooley and J.F. Elliott,Trans. Metall. Soc. AIME, 239, 1872 (1967).Google Scholar
  27. 27.
    H. Said and R. Castanet,J. Less-Common Met., 68,213 (1979).CrossRefGoogle Scholar
  28. 28.
    W. Vogelbein, M. Ellner, and B. Predel,Thermochim. Acta, 44,141 (1981).CrossRefGoogle Scholar
  29. 29.
    J. Rogez and R. Castanet,Mater. Chem. Phys., 9,597 (1983).CrossRefGoogle Scholar
  30. 30.
    O.J. Kleppa and K.C. Hong,J. Chem. Thermodyn., 10,243 (1978).CrossRefGoogle Scholar
  31. 31.
    K.C. Hong and O.J. Kleppa,J. Chem. Thermodyn., 10,797 (1978).CrossRefGoogle Scholar
  32. 32.
    O.J. Kleppaand S. Sato,J. Chem. Thermodyn., 14,133 (1982).CrossRefGoogle Scholar
  33. 33.
    L. Topor and O.J. Kleppa,J. Chem. Thermodyn., 16,993 (1984).CrossRefGoogle Scholar
  34. 34.
    L. Topor and O.J. Kleppa,J. Chem. Thermodyn., 17,109 (1985).CrossRefGoogle Scholar
  35. 35.
    M. Baier, C. Chatillon-Colinet, and J.C. Mathieu,Ann. Chim., Sci. Mater, 6,291 (1981).Google Scholar
  36. 36.
    L. Topor and O.J. Kleppa,Metall. Trans. A, 17,1217 (1986).CrossRefGoogle Scholar
  37. 37.
    L. Topor and O.J. Kleppa,Z Metallkd., 77,633 (1986).Google Scholar
  38. 38.
    S. Martosudirdjo and J.N. Pratt,Thermochim. Acta, 10,23 (1974).CrossRefGoogle Scholar
  39. 39.
    A.W. Bryant and J.N. Pratt,Metall. Chem. Symp., Brunei Univ.- NPL, paper 1.2,O. Kubaschewski, Ed., London HMSO, 1972.Google Scholar
  40. 40.
    N.F. Schottky and M.B. Bever,Acta Metall., 6,320 (1958).CrossRefGoogle Scholar

Copyright information

© ASM International 1994

Authors and Affiliations

  • R. Castanet
    • 1
  1. 1.Centre de Thermodynamique et de Microcalorimétrie du C.N.R.S. 26MarseilleFrance

Personalised recommendations