Plant Molecular Biology Reporter

, Volume 13, Issue 4, pp 327–332 | Cite as

Nucleotide sequence of the cyanelle genome fromCyanophora paradoxa

  • Veronica L. Stirewalt
  • Christine B. Michalowski
  • Wolfgang Löffelhardt
  • Hans J. Bohnert
  • Donald A. Bryant
Genetic Resource

Abstract

The complete nucleotide sequence of the cyanelle genome ofCyanophora paradoxa Pringsheim strain LB 555 was determined (accession number U30821). The circular molecule is 135,599 base pairs in length. The physical map of this DNA molecule is shown along with identified genes and open reading frames.

Key Words

Cyanophora paradoxa cyanelle chloroplast plastid nucleotide sequence 

Abbreviations

LSC

large single-copy region

SSC

small single-copy region

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hallick, R.B.. 1989. Proposals for the naming of chloroplast genes. II. Update to the nomenclature of genes for thylakoid membrane polypeptides. Plant Mol. Biol. Reptr. 7:266–275.Google Scholar
  2. Hallick, R.B. and A. Bairoch. 1994. Proposals for the naming of chloroplast genes. III. Nomenclature for open reading frames encoded in chloroplast genomes. Plant Mol. Biol. Reptr. 12:S29–30.Google Scholar
  3. Hallick, R.B. and W. Bottomley. 1983. Proposals for the naming of chloroplast genes. Plant Mol. Biol. Reptr. 1:38–43.CrossRefGoogle Scholar
  4. Hallick, R.B., L. Hong, R.G. Drager, M.R. Favreau, A. Montfort, B. Orsat. A. Spielmann and E. Stutz. 1993. Complete sequence of theEuglena gracilis chloroplast DNA. Nucleic Acids Res. 21:3537–3544.PubMedCrossRefGoogle Scholar
  5. Hiratsuka, J., H. Shimada, R. Whittier, T. Ishibashi, M. Sakamoto, M. Mori, C. Kondo, Y. Honji, C. Sun, B. Meng, Y. Li, A. Kanno, Y. Nishizawa A. Hirai, K. Shinozaki and M. Sugiura. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes account for a major plastid inversion during the evolution of cereals. Mol. Gen. Genet. 217:185–194.PubMedCrossRefGoogle Scholar
  6. Kowallik, K.V., B. Stoebe, I. Schaffran and U. Freier. 1995. The chloroplast genome of a chlorophylla+c-containing alga,Odontella sinensis. Plant Mol. Biol. Reptr. 13:226–342Google Scholar
  7. Kuhsel, M.G., R. Strickland and J.D. Palmer. 1990. An ancient group I intron shared by eubacteria and chloroplasts. Science 250:1570–1573.PubMedCrossRefGoogle Scholar
  8. Löffelhardt, W. and H.J. Bohnert. 1994. Molecular biology of cyanelles. In:The Molecular Biology of Cyanobacteria, (ed. D.A. Bryant), pp. 65–89, Kluwer Academic Publ., Dordrecht.Google Scholar
  9. Maier, R.M., K. Neckermann, G.I. Igloi and H. Kössel. 1995. Complete sequence of the maize chloroplast genome: Gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 251:614–628.PubMedCrossRefGoogle Scholar
  10. Ohyama, K., H. Fukuzawa, T. Kohchi, H. Shirai, T. Sano, S. Sano, K. Umesono, Y. Shiki, M. Takeuchi, Z. Chang, S.-i Aota, H. Inokuchi and H. Ozeki. 1986. Chloroplast gene organization deduced from complete sequence of liverwortMarchantia polymorpha. Nature 322:572–574.CrossRefGoogle Scholar
  11. Reith, M.. 1995. Molecular biology of rhodophyte and chromophyte plastids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:549–575.CrossRefGoogle Scholar
  12. Reith, M. and J. Munholland. 1995. Complete nucleotide sequence of thePorphyra purpurea chloroplast genome. Plant Mol. Biol. Reptr. 13:333–345.Google Scholar
  13. Shinozaki, K., M. Ohme, M. Tanaka, T. Wakasugi, N. Hayashida, T. Matsubayashi, N. Zaita, J. Chunwongse, J. Obokata, K. Yamaguchi-Shinozaki, C. Ohto, K. Torazawa, B.Y. Meng, M. Sugita, H. Deno, T. Kamogashira, K. Yamada, J. Kusuda, F. Takaiwa, A. Kato, N Tohdoh, H. Shimada and M. Sugiura. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J. 5:2043–2049.PubMedGoogle Scholar
  14. Wakasugi, T., J. Tsudsuki, S. Ito, K. Nakashima, T. Tsudsuki and M. Sugiura. 1994. Loss of allndh genes as determined by sequencing the entire chloroplast genome of the black pinePinus thunbergii. Proc. Natl. Acad. Sci. U.S.A. 91:9794–9798.PubMedCrossRefGoogle Scholar
  15. Wolfe, K.H., C.W. Morden and J.D. Palmer. 1992. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc. Natl. Acad. Sci. U.S.A. 89:10648–10652.PubMedCrossRefGoogle Scholar
  16. Xu, M.Q., S.D. Kathe, H. Goodrich-Blair, S.A. Nierzwicki-Bauer and D.A. Shub 1990. Bacterial origin of a chloroplast intron: Conserved self-splicing group I introns in cyanobacteria. Science 250:1566–1570.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Veronica L. Stirewalt
    • 1
  • Christine B. Michalowski
    • 2
  • Wolfgang Löffelhardt
    • 3
  • Hans J. Bohnert
    • 2
  • Donald A. Bryant
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkU.S.A.
  2. 2.Department of Biochemistry, Molecular and Cellular Biology, and Plant SciencesThe University of ArizonaTucsonU.S.A.
  3. 3.Institut für Biochemie und Molekulare Zellbiologie und Ludwig-Boltzmann-Forschungsstelle für BiochemieUniversität WienViennaAustria

Personalised recommendations