Journal of Phase Equilibria

, Volume 14, Issue 5, pp 601–611 | Cite as

Revision of the enthalpies and gibbs energies of formation of calcium oxide and magnesium oxide

  • K. V. Gourishankar
  • M. Karaminezhad Ranjbar
  • G. R. St. Pierre
Section I: Basic and Applied Research


Major revisions in the enthalpies and Gibbs energies of formation of calcium oxide and magnesium oxide are presented. In free-evaporation experiments over the temperature range of 1830 to 2070 K, the kinetics of vaporization of calcium oxide and magnesium oxide have been studied. Conditions of local equilibrium were established. The results lead to new values for the standard enthalpies of formation of CaO and MgO. The ΔfH2980 of CaO is ≈33 kJ/mol more positive than the currently tabulated value, whereas that for MgO is ≈34 kJ/mol more negative. The currently tabulated values could not account for these observations nor for other recent studies. These significant changes result in a reversal of the relative thermodynamic stabilities of CaO and MgO, with MgO now indicated as the more stable oxide at lower temperatures on Ellingham diagrams. These results are consistent with recent work on the formation of CaC2, solubility product measurements in liquid iron, and with theoretical models based on ionic radii.


Gibbs Energy Mass Loss Rate Liquid Iron Standard Enthalpy Calcium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited References

  1. 1.
    M.W. Chase, Jr., C.A. Davies, J.R. Kowney, Jr., DJ. Frurip, R.A. McDonald, and A.N. Syverud,J. Phys. Chem. Ref. Data, 3rd ed.,JANAF Thermochemical Tables, Vol. 14, supp. 1 (1985).Google Scholar
  2. 2.
    J.F. Elliott and M. Gleiser,Thermochemistry for Steelmaking, Ad- dison-Wesley Publ. Co. Inc., Vol. 1 (1960).Google Scholar
  3. 3.
    E.J. Huber, Jr. and CE. Holley, Jr., “The Heat of Combustion of Calcium,”J. Phys. Chem., 60,498–499 (1956).CrossRefGoogle Scholar
  4. 4.
    U.S. National Bureau of Standards Circ.,Selected Values of Chemical Thermodynamic Properties, Vol. 500 (1952).Google Scholar
  5. 5.
    CE. Holley, Jr. and EJ. Huber, Jr., “The Heat of Combustion of Magnesium and Aluminum,”J. Amer. Chem. Soc., 73, 5577–5579 (1951).CrossRefGoogle Scholar
  6. 6.
    T. Sata, T. Sasamoto, and K. Matsumoto, “High-Temperature Vaporization of Calcium Oxide,”High Temp.—High Press., 14, 399- 408 (1982).Google Scholar
  7. 7.
    A. Chrysanthou and P. Grieveson, “Re-Evaluation of the Thermo- dynamic Stability of Calcium Oxide,”Scand. J. Metall, 20(2), 165- 167(1991).Google Scholar
  8. 8.
    A.K. Vijh, “The Thermodynamic and the Kinetic Stability of Metal Surfaces: The Role of Ionic and Metallic Radii,”Mater. Chem. Phys., 25(3), 259–267 (1990).CrossRefGoogle Scholar
  9. 9.
    Ken-ichiro Suzuki, “CaO(s)=Ca+O, [In Carbon-Saturated Iron],”Steelmaking Data Sourcebook, The Japan Society for the Promotion of Science, The 19th Comm. on Steelmaking, Gordon and Breach Publishers, New York, NY, 79–85 (1988).Google Scholar
  10. 10.
    Q. Han, X. Zhang, D. Chen, and P. Wang, “The Calcium-Phosphorus and the Simultaneous Calcium-Oxygen and Calcium-Sulfur Equilibria in Liquid Iron,”Metall. Trans.B, 19, 617–622(1988).CrossRefGoogle Scholar
  11. 11.
    T. Wakasugi and N. Sano, “Re-Evaluation of Standard Free Energy of Formation of CaO,”Metall. Trans. B, 20,43W33 (1989).CrossRefGoogle Scholar
  12. 12.
    D.M. Edmunds and J. Taylor, “Reaction CaO + 3C = CaC2 + CO and Activity of Lime in CaO-Al2O3-CaF2 System,”J. Iron Steel Inst., 210,280–283 (1972).Google Scholar
  13. 13.
    D.A.R. Kay and S.V. Subramanian, “Inclusions in Calcium-Treated Steels,”2nd Intl. Symp. on the Effects and Control of Inclusions and Residuals in Steel, Toronto, ON, Metall. Soc. CJM, 125–143, Aug. 17–20(1986).Google Scholar
  14. 14.
    J.H. Swisher, “Thermodynamics of Carbide Formation and Graphite Solubility in the CaO-SiO2-Al2O3 System,”Trans. Metall. Soc. AIME, 242,2033–2037 (1968).Google Scholar
  15. 15.
    DJ. Minand N. Sano, “Determination of Standard Free Energies of Formation of Ca3P2 and Ca2Sn at High Temperatures,”Metall. Trans. B, 19,433–439 (1988).CrossRefGoogle Scholar
  16. 16.
    J.H. Rai and N.W. Gregory, “The Tune Dependence of Effusion Cell Steady-State Pressures of Carbon Monoxide and Calcium Va- pors Generated by the Interaction of Calcium Oxide and Graphite,”J. Phys. Chem., 74, 529–534(1979).CrossRefGoogle Scholar
  17. 17.
    TP. Babeliowsky and A.J.H. Boerboom, “Mass Speclrometric Study of CaO and Ta,”Advances in Mass Spectrometry, 2,135–140(1963).CrossRefGoogle Scholar
  18. 18.
    M. Nadif and C. Gatellier, “Influence of an Addition of Calcium or of Magnesium on the Solubility of Oxygen and Sulfur in Liquid Steel,”Rev. Metallurgie-CTT, 83(5), 377–394 (1986).CrossRefGoogle Scholar
  19. 19.
    E.T. Turkdogan, “Possible Failure of EMF Oxygen Sensor in Liquid Iron Containing Dissolved Calcium or Magnesium,”Steel Res., 62(9), 379–382 (1991).CrossRefGoogle Scholar
  20. 20.
    T. Rosenqvist, “A Thermodynamic Study of the Reaction CaS+H2O = CaO+H2S and the Desulphurization of Liquid Metals with Lime,”Trans. Metall. Soc. AIME, 191,535–540 (1951).Google Scholar
  21. 21.
    E.W. Dewing and F.D. Richardson, “Decomposition Equilibria for Calcium and Magnesium Sulphates,”Trans. Faraday Soc, 55,611 - 615(1959).CrossRefGoogle Scholar
  22. 22.
    E.T. Turkdogan, B.B. Rice, and J.V. Vinters, “Sulfide and Sulfate Solid Solubility in Lime, Magnesia, and Calcined Dolomite: Part 1. CaS and CaSO4 Solubility in CaO,”Metall. Trans. A, 5,1527–1535 (1974).ADSCrossRefGoogle Scholar
  23. 23.
    H.H. Frank and H. Fuldner, “Contribution to the Knowledge of Phosphate Reduction,”Z Anorg. Allg. Chem., 204, 97–139 (1932).CrossRefGoogle Scholar
  24. 24.
    K. Schwerdtfeger and H.G. Schubert, “Solubility of Nitrogen in CaO-Al2O3 Melts in Graphite Crucible at 1600 °C,”Arch. Eisen- hütenwes., 45(10), 649–655 (1974).Google Scholar
  25. 25.
    H.J. Engell, M. Köhler, H.J. Fleischer, R. Thielmann, and E. Schürmann, “Fundamentals of the Removal of an Accompanying Element from Melting Steel with Metallic Calcium and Calcium Hal- ide Slag,”Stahl Eisen, 104(9), 443–449 (1984).Google Scholar
  26. 26.
    E. Schürmann and H. Jacke, “Fusion Equilibrium in the System Fe- C-Ca,”Steel Res., 58(9), 399–405 (1987).CrossRefGoogle Scholar
  27. 27.
    R.L. Airman, “Vaporization of Magnesium Oxide and Its Reaction with Alumina,”J. Phys. Chem., 67(2), 366–369 (1963).CrossRefGoogle Scholar

Copyright information

© ASM International 1993

Authors and Affiliations

  • K. V. Gourishankar
    • 1
  • M. Karaminezhad Ranjbar
    • 1
  • G. R. St. Pierre
    • 1
  1. 1.Departments of Materials Science and EngineeringThe Ohio State UniversityColumbus

Personalised recommendations