Journal of Phase Equilibria

, Volume 14, Issue 5, pp 563–571 | Cite as

Calculation of thermodynamic properties of metastable phases of the elements

  • J. Kouvetakis
  • L. Brewer
Section I: Basic and Applied Research


A chemical bonding model that provides a method of predicting thermodynamic properties of metastable structures of the solid elements is presented. The method involves a Born-Haber-type cycle to calculate the difference in bonding energies between the room temperature stable structures and metastable structures. To carry out the calculations, spectroscopic data are used to determine the promotion energies from the ground state of the gaseous atom to the valence state corresponding to each structure. Such data are available for most elements, but in cases where experimental data are lacking, they are derived using predictive models. Combinations of promotion energies and heats of sublimation are used to determine bonding enthalpies. The contribution of the outer-shell s and p-electrons and the inner-shell d and f electrons to the bonding energies are considered taking into account the crystal field effect upon the bonding abilities of different d and f orbitals


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited References

  1. 31Hum:.
    W. Hume-Rothery,The Metallic State, Oxford University Press (1931);Structure of Metals and Alloys, Institute of Metals,Lon-don(1936).Google Scholar
  2. 49Mor:.
    C.E. Moore,Atomic Energy Levels, Vol. 1-3, U.S. National Bureau of Standards Circ. 467, U.S. Gov’t Printing Office, Washington, D.C. (1949,1952,1958).Google Scholar
  3. 54Eng:.
    N. Engel, “Properties of Metallic Phases as a Function of Number and Kind of BondingElectrons,”Powder Met. Bull. 7,8 (1954); L. Brewer, “Thermodynamic Stability and Bond Character in Relation to Electronic Structure and Crystal Structure,”Electronic Structure and Alloy Chemistry of Transition Elements, P.A. Beck, Ed., 221-235, Interscience Publ., John Wiley, New York (1963).Google Scholar
  4. 67Bre:.
    L. Brewer, “Viewpoints of Stability of Metallic Structures,”Bat- telle Geneva Colloquium on Phase Stability in Metals and Alloys, P. Rudman, J. Stringer, and R.L. Jaffee, Ed., 39–61, McGraw-Hill, New York(1967).Google Scholar
  5. 68Jan:.
    Incorporated into [85Jan].Google Scholar
  6. 70Jan:.
    Incorporated into [85Jan].Google Scholar
  7. 71Bre:.
    L. Brewer, “Energies of the Electronic Configurations of the Lanthanides and Actinide Neutral Atoms,”J. Opt. Soc.Am.,61,1101- 1111 (1971); “Energies of the Electronic Configurations of theSingly, Doubly, and Triply Ionized Lanthanides and Actinides,”J. Opt. Soc. Am.,61,1666-1681 (1971).CrossRefADSGoogle Scholar
  8. 73HuI:.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman,Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, OH (1973).Google Scholar
  9. 75Str:.
    L.A. Stretz and R.G. Bautista, “The Thermodynamic Properties of Liquid Neodymium by Levitation Calorimetry,”High Temp. Sci., 7,197–203(1975).Google Scholar
  10. 76Oet:.
    EL. Oetting, M.H. Rand, and R.J. Ackermann,The Chemical Thermodynamics of Actinide Elements and Compounds, Part 1—The Actinide Elements, International Atomic Energy Agency, Vienna (1976).Google Scholar
  11. 78Jan:.
    Incorporated into [85Jan].Google Scholar
  12. 78Mar:.
    W.C. Martin, R. Zalubas, and L. Hagan,Atomic Energy Levels—TheRare-Earth Elements, National Bureau of Standards (April 1978). Google Scholar
  13. 79Jan:.
    Incorporated into [85Jan].Google Scholar
  14. 80Bre:.
    L. Brewer and R.H. Lamoreaux, “Thermochemical Properties of Molybdenum and its Compounds and Alloys,” 1 -192 and “Phase Diagrams of Molybdenum Binary Systems,” 195-356 inAtomic Energy Review Special Issue No. 7, International Atomic Energy Agency, Vi- enna(1980).Google Scholar
  15. 83Bre:.
    L. Brewer, “Systematics of the Properties of the Lanthanides,” inNATO ASI Series C: Mathematical and Physical Sciences, No. 109, S.P. Sinha,Ed., D. Reidel, Boston, 17-69 (1983).Google Scholar
  16. 85Jan:.
    C.A. Chase, Jr., J.R. Davies, D.J. Downey, Jr., R.A. McDonald, and A.N. Syverud, “JANAF Thermochemical Tables,”J. Phys. Chem. Ref. Data, 14, Suppl. 1 (1985).Google Scholar
  17. 85Sug:.
    J. Sugar and C. Corliss, “Atomic Energy Levels of the Iron-Period Elements: Potassium Through Nickel,”J. Phys. Chem. Ref. Data,14, Suppl. 2 (1985).Google Scholar
  18. 86War:.
    J.W. Ward, P.D. Kleinschmidt, and D.E. Peterson, “Thermochemical Properties of the Actinide Elements and Selected Actinide- Noble Metal Intermetallics,”Handbook on the Physics and Chemistry of the Actinides, A.J. Freeman and C. Keller, Ed., Elsevier Science Publishing Co., New York, 309–412 (1986).Google Scholar
  19. 87Des:.
    P. D. Desai, “Thermodynamic Properties of Manganese and Molybdenum,”J. Phys. Chem. Ref. Data, 16,91 (1987).ADSGoogle Scholar
  20. 89Gur:.
    L.V. Gurvich, I.V. Veyts, and C.B. Alcock,Thermodynamic Properties of Individual Substances, Vol. 1, Hemisphere Publ. Corp. (1989).Google Scholar
  21. 92Bla:.
    J. Blaise and J.-F. Wyart,Energy Levels and Atomic Spectra of Actinides, International Tables of Selected Constants 20, Imprimerie Jouve, Paris(1992).Google Scholar

Copyright information

© ASM International 1993

Authors and Affiliations

  • J. Kouvetakis
    • 1
  • L. Brewer
    • 2
    • 3
  1. 1.Department of ChemistryArizona State UniversityTempe
  2. 2.Department of ChemistryUniversity of CaliforniaBerkeley
  3. 3.Materials Sciences DivisionLawrence Berkeley LaboratoryBerkeley

Personalised recommendations