Plant Molecular Biology Reporter

, Volume 12, Issue 1, pp 6–13 | Cite as

A simple and efficient method for DNA extraction from grapevine cultivars andVitis species

  • Muhammad A. Lodhi
  • Guang-Ning Ye
  • Norman F. Weeden
  • Bruce I. Reisch
Commentary

Abstract

A quick, simple, and reliable method for the extraction of DNA from grapevine species, hybrids, andAmpelopsis brevipedunculata (Vitaceae) has been developed. This method, based on that of Doyle and Doyle (1990), is a CTBA-based extraction procedure modified by the use of NaCl to remove polysaccharides and PVP to eliminate polyphenols during DNA purification. The method has also been used successfully for extraction of total DNA from other fruit species such as apple (Malus domestica), apricot (Prunus armeniaca), cherry (Prunus avium), peach (Prunus persica), plum (Prunus domestica), and raspberry (Rubus idaeus). DNA yield from this procedure is high (up to 1 mg/g of leaf tissue). DNA is completely digestible with restriction endonucleases and amplifiable in the polymerase chain reaction (PCR), indicating freedom from common contaminating compounds.

Key Words

DNA extraction Vitis polyphenols polysaccharides RAPD restriction digestion 

Abbreviations

CTAB

cetyltrimethylammonium bromide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arumuganathan, K. and E.D. Earle 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9:208–218.CrossRefGoogle Scholar
  2. Baribault, T.J., K.G.M. Skene and N.S. Scott. 1989. Genetic transformation of grapevine cells. Plant Cell Rep. 8:137–140.CrossRefGoogle Scholar
  3. Baribault, T.J., K.G.M. Skene, P.A. Cain and N.S. Scott. 1990. Transgenic grapevines: Regeneration of shoots expressing β-glucuronidase. J. Exp. Bot. 41:1045–1049.CrossRefGoogle Scholar
  4. Bourquin, J.-C., L. Otten and B. Walter 1991. Identification of grapevine root-stocks by RFLP. C.R. Acad. Sci. Paris 312 Série III:593–598.Google Scholar
  5. Collins, G.G. and R.H. Symons 1992. Extraction of nuclear DNA from grape vine leaves by a modified procedure. Plant Mol. Biol. Rept 10:233–235.CrossRefGoogle Scholar
  6. Collins, G.G. and R.H. Symons. 1993. Polymorphisms in grapevine DNA detected by the RAPD PCR technique. Plant Mol. Biol. Rept. 11:105–112.CrossRefGoogle Scholar
  7. Couch, J.A. and P.J. Fritz. 1990. isolation of DNA from plants high in polyphenolics. Plant Mol. Biol. Rep. 8:8–12.CrossRefGoogle Scholar
  8. Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull. 19:11–15.Google Scholar
  9. Doyle, J.J. and J.L. Doyle 1990. Isolation of plant DNA from fresh tissue. Focus 12:13–15.Google Scholar
  10. Fang, G., S. Hammar and R. Rebecca 1992. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Bio Techniques 13:52–56.Google Scholar
  11. Hain, R., H.J. Reif, E. Krause, R. Langebartels, H. Kindl, B. Vornam, W. Wiese, E. Schmelzer, P.H. Schreier, R.H. Stöcker and K. Stenzel 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156.PubMedCrossRefGoogle Scholar
  12. Hébert D., J.R. Kikkert, F.D. Smith and B.L. Reisch 1993. Optimization of biolistic transformation of embryogenic grape cell suspensions. Plant Cell Rep. 12:585–589.CrossRefGoogle Scholar
  13. Howland, D.E., R.P. Oliver and A.J. Davy. 1991. A method of extraction of DNA from birch. Plant Mol. Biol. Rep. 9:340–344.CrossRefGoogle Scholar
  14. Katterman, F.R.H. and V.L. Shattuck. 1983. An effective method of DNA isolation from the mature leaves ofGossypium species that contain large amounts of phenolic terpenoids and tannins. Preparative Biochemistry 13:347–359.PubMedCrossRefGoogle Scholar
  15. Lodhi, M.A., B.l. Reisch and N.F. Weeden. 1992a. Molecular genetic mapping and genome size ofVitis. Plant Genome I, 9–11 November, San Diego, CA, USA (Abstract).Google Scholar
  16. Lodhi, M.A., B.L. Reisch and N.F. Weeden 1992b. Molecular genetic mapping of theVitis genome. Am. J. Enol. Vitic. 43:393 (Abstract).Google Scholar
  17. Lodhi, M.A., B.l. Reisch and N.F. Weeden 1993. Molecular genetic mapping and genome size ofVitis. Hort Science 28:489 (Abstract #289).Google Scholar
  18. Maliyakal, E.J. 1992. An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Nucleic Acids Res. 20:2381.CrossRefGoogle Scholar
  19. Mauro, M.-C., M. Strefeler, N.F. Weeden and B.I. Reisch. 1992. Genetic analysis of restriction fragment length polymorphisms in Vitis. J. Hered. 83:18–21.Google Scholar
  20. Murray, M.G. and W.F. Thompson. 1980. Rapid isolation of high molecular weight DNA. Nucleic Acids Res. 8:4321–4325.PubMedCrossRefGoogle Scholar
  21. Richards, E. 1988. Preparation of genomic DNA from plant tissue. In:Current Protocols in MolecularBiology (eds. F.M. Ausubel, R.E. Kingston, D.D. Moore, J.A. Smith, J.G. Seidman and K. Struhl), pp. 2.3.2–2.3.3. Greene Publishing Associates and Wiley-Interscience, New York.Google Scholar
  22. Rogers, S.O. and A.J. Bendich. 1985. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5:69–76.CrossRefGoogle Scholar
  23. Rowland, L.J. and B. Nguyen. 1993. Use of polyethylene glycol for purification of DNA from leaf tissue of woody plants. Bio Techniques 14:734–736.Google Scholar
  24. Shioda, M. and K. Marakami-Muofushi 1987. Selective inhibition of DNA polymerase by a polysaccharide purified from slime ofPhysarum polycephalum. Biochem. Biophys. Res. Commun. 146:61–66.PubMedCrossRefGoogle Scholar
  25. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.PubMedCrossRefGoogle Scholar
  26. Striem, M.J., P. Spiegel-Roy, G. Ben-Hayyim, J. Beckmann and D. Gidoni. 1990. Genomic fingerprinting ofVitis vinifera by the use of multi-loci probes. Vitis 29:223–227.Google Scholar
  27. Thomas, M.R., S. Matsumoto, P. Cain and N.S. Scott. 1993. Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor. Appl. Genet. 86:173–180.Google Scholar
  28. Webb, D.M. and S.J. Knapp. 1990. DNA extraction from a previously recalcitrant plant genus. Plant Mol. Biol. Rep. 8:180–185.CrossRefGoogle Scholar
  29. Weeden, N.F., G.M. Timmerman, M. Hemmat, B.E. Kneen and M.A. Lodhi. 1992. Inheritance and reliability of RAPD markers. In:Proceedings of the Joint Plant Breeding Symposium Series. Applications of RAPD Technology to Plant Breeding. Crop Science Scociety of America, American Society for Horticultural Science and American Genetic Association. pp. 12–17.Google Scholar
  30. Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531–6535.PubMedCrossRefGoogle Scholar
  31. Yamamoto, N., G. Ono, K. Takashima and A. Totsuka. 1991. Restriction fragment length polymorphisms of grapevine DNA with phenylalanine ammonia-lyase cDNA. Jap. J. Breed. 41:365–368.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Muhammad A. Lodhi
    • 1
  • Guang-Ning Ye
    • 1
  • Norman F. Weeden
    • 1
  • Bruce I. Reisch
    • 1
  1. 1.Department of Horticultural Sciences, New York State Agricultural Experiment StationCornell UniversityGenevaUSA

Personalised recommendations