Multiple spin echoes for the evaluation of trabecular bone quality

  • S. Capuani
  • F. M. Alessandri
  • A. Bifone
  • B. Maraviglia
Article

Abstract

We report a simple and efficient MR method for the evaluation of trabecular bone quality. This technique is based on detection and imaging of Multiple Spin-Echoes (MSE), a manifestation of the dipolar field generated by residual intermolecular dipolar couplings in liquids. In the particular implementation we have used, originally proposed by Bowtell [J. Magn. Reson. 100 (1992) 1; J. Magn. Reson. 88 (1990) 643; Phys. Rev. Lett. 76 (1996) 4971]. multiple spin echoes (MSE) are refocused in a two-pulse experiment in the presence of a correlation linear magnetic field gradient Gc. This gradient generates a magnetisation helix and results in the spatial modulation of the sample magnetisation. In heterogeneous systems, the amplitude of the MSE signal depends on sample heterogeneity over a distanced= π.(γ/Gcτ) which is half a cycle of the magnetisation helix, thus providing a novel contrast mechanism that can be tuned to a specific length scale. We have exploited this mechanism to study young bovine trabecular bone samples ex-vivo. We show that MSE images present a different contrast from conventional MR images, and that, by varying the experimental parameters, the image contrast can be related to specific trabecular pore sizes. The potential of this technique for the early diagnosis of osteoporotic diseases is discussed.

Keywords

Multiple Spin Echoes (MSE) Dipolar field Trabecular bone Bone marrow image contrast Diffusion coefficient Intertrabecular space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Francis RM. Osteoporosis, pathogenesis and management. Dordrecht: Kluwer Academic Publishers, 1990.Google Scholar
  2. [2]
    Parfitt AM. Age related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int 1984;36:S123–8.PubMedCrossRefGoogle Scholar
  3. [3]
    Ford JC, Wehrli FW. In vivo quantitative characterisation of trabecular bone by NMR interferometry and localised proton spectroscopy. Magn Reson Med 1991; 17:543 -51.PubMedCrossRefGoogle Scholar
  4. [4]
    Majumdar S. Thomasson D, Shimakawa A, Genant HK. Quantitation of the susceptibility difference between trabecular bone and bone marrow: experimental studies. Magn Reson Med 1991:22:111–27.PubMedCrossRefGoogle Scholar
  5. [5]
    Wehrli FW. Ford JC Attic M. Kressel HY, Kaplan FS. Trabecular structure: preliminary application of MR interferometry. Radiology 1991:179:615–21.PubMedGoogle Scholar
  6. [6]
    Ford JC, Wehrli FW. Chung HV. Magnetic field distribution in models of trabecular bone. Magn Reson Med 1993:30:373–9.PubMedCrossRefGoogle Scholar
  7. [7]
    Jara H. Wehrli FW, Chung HW, Ford JC. High-resolution variable flip angle 3D MR imaging of trabecular microstructures in vivo. Magn Reson Med 1993:29:528–39.PubMedCrossRefGoogle Scholar
  8. [8]
    Chung HW. Wehrli FW. Williams JL, Wehrli S. Three-dimensional nuclear magnetic resonance microimaging of trabecular bone. J Bone Miner Res 1995:10:1452–6.PubMedCrossRefGoogle Scholar
  9. [9]
    Richter W. Lee S, Warren WS. He Q. Imaging with intermolecular multiple quantum coherences in solution nuclear magnetic resonance. Science 1995:267:654 -7.PubMedCrossRefGoogle Scholar
  10. [10]
    Warren WS. Richter W. Andreotti AH. Farmer BT. Generation of impossible cross-peaks between bulk water and biomoleeules in solution NMR. Science 1993:262:2005–9.PubMedCrossRefGoogle Scholar
  11. [11]
    Bifone A. Payne GS. Leach MO. In vivo multiple spin echoes. J Magn Reson 1998:135:30–6.PubMedCrossRefGoogle Scholar
  12. [12]
    Zhong J. Chen Z, Kwok E. In vivo intermolecular double-quantum imaging on a clinical 1.5 T MR scanner. Magn Reson Med 2000:43:335–41.PubMedCrossRefGoogle Scholar
  13. [13]
    Rizi RR. Ahn S, Alsop DC. Garrett-Roe S. Mescher M. Richter W, Schnall MD, Leigh JS. Warren WS. Intermolecular zeroquantum coherence imaging of the human brain. Magn Reson Med 2000:43:627–32.PubMedCrossRefGoogle Scholar
  14. [14]
    Bowtell R. Indirect detection via the dipolar demagnetizing field. J Magn Reson 1992:100:1–17.Google Scholar
  15. [15]
    Bowtell R, Bowley RM. Glover P. Multiple spin echoes in liquids in a high magnetic field. J Magn Reson 1990:88:643–51.Google Scholar
  16. [16]
    Bowtell R. Robyr P. Structural investigation with the dipolar demagnetizing field in solution NMR. Phys Rev Lett 1996:76:4971–4.PubMedCrossRefGoogle Scholar
  17. [17]
    Lian J. Williams DS, Lowe IJ. Magnetic resonance imaging of diffusion in the presence of background gradients and imaging of background gradients. J Magn Reson A 1994:106:65–74.CrossRefGoogle Scholar
  18. [18]
    Capuani S, Curzi F, Alessandri FM, Bifone A. Maraviglia B. Characterization of trabecular bone by dipolar demagnetizing field MR imaging. Magn Reson Med 2001:46:683–9.PubMedCrossRefGoogle Scholar

Copyright information

© Elsevier Sciencen B.V 2002

Authors and Affiliations

  • S. Capuani
    • 1
  • F. M. Alessandri
    • 1
  • A. Bifone
    • 2
  • B. Maraviglia
    • 1
  1. 1.Physics Department, Istituto Nuzionale Fisica della Materia (INFM) UdR RomalUniversity “La Sapienza” Piazzale, Aldo Moro 2RomeItaly
  2. 2.CRC Clinical Magnetic Resonance Research Group, The Institute of Cancer ResearchSuttonUK

Personalised recommendations