Java-based graphical user interface for the MRUI quantitation package

  • A. Naressi
  • C. Couturier
  • J. M. Devos
  • M. Janssen
  • C. Mangeat
  • R. de Beer
  • D. Graveron-Demilly


This article describes the Java-based version of the magnetic resonance user interface (MRUI) quantitation package. This package allows MR spectroscopists to easily perform time-domain analysis of in vivo MR spectroscopy data. We show that the Java programming language is very well suited for developing highly interactive graphical software applications such as the MRUI software. We have also established that MR quantitation algorithms, programmed in other languages, can easily be embedded into the Java-based MRUI by using the Java native interface (JNI). This new graphical user interface (GUI) has been conceived for the processing of large data sets and uses prior knowledge data-bases to make interactive quantitation algorithms more userfriendly.


Java Graphical user interface (GUI) Magnetic resonance spectroscopy (MRS) Quantitation MRUI package 


  1. [1]
    The MRUI Home Page. See: mruiHomepage.html.Google Scholar
  2. [2]
    For all details on the MATLAB software, browse through The Mathworks Web site at: Scholar
  3. [3]
    van den Boogaart A. MRUI manual v96.3. A User’s Guide to the Magnetic Resonance User Interface Software Package, The European Union Human Capital and Mobility Networks Programme, Project Number HCM-CHRX-CT94-0432, Advanced Signal Processing for Medical Magnetic Resonance Imaging and Spectroscopy, ISBN: 90-9010509-3. Delft, 1997.Google Scholar
  4. [4]
    van den Boogaart A, Cavassila S, Vanhamme L, Totz J, Van Hecke P. A complete software package for MR signal processing. In: Eighteenth Annual International Conference of IEEE Engineering Medical and Biological Society, Amsterdam, 1996.Google Scholar
  5. [5]
    The Home Page of the European Union project TMR Networks ERB-FMRX-CT97-0160. See: tmr.html.Google Scholar
  6. [6]
    Arnold K, Gosling J. The Java Programming Language. Reading: Addison Wesley, 1996.Google Scholar
  7. [7]
    Chan P, Lee R, Kramer D. The Java Class Libraries, vol. 1, second ed. Reading: Addison Wesley, 1998.Google Scholar
  8. [8]
    Chan P, Lee R. The Java Class Libraries, vol. 2, second ed. Reading: Addison Wesley, 1998.Google Scholar
  9. [9]
    Flanagan D. Java in a Nutshell. Cambridge: O’Reilly, 1997.Google Scholar
  10. [10]
    Weiner SR, Asbury S. Programming with JFC. New York: Wiley, 1998.Google Scholar
  11. [11]
    Gutz S. Up to Speed with Swing. User Interfaces with Java Foundation Classes. Greenwich: Manning, 1998.Google Scholar
  12. [12]
    Barkhuijsen H, de Beer R, van Ormondt D. Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals. J Magn Reson 1987;73:553–7.Google Scholar
  13. [13]
    de Beer R, van Ormondt D. Analysis of NMR data using time domain fitting. In: Diehl P, Fluck E, Gunther H, Kosfeld R, Seeling J, editors. NMR Basic Principles and Progress. Berlin: Springer, 1992:202–48.Google Scholar
  14. [14]
    Pijnappel WWF, van den Boogaart A, de Beer R, van Ormondt D. SVD-based quantification of magnetic resonance signals. J Magn Reson 1992;97:122–34.Google Scholar
  15. [15]
    Van Huffel S, Chen H, Decanniere C, Van Hecke P. Algorithm for time-domain NMR data fitting based on total least squares. J Magn Reson Ser A1994;110:228–37.CrossRefGoogle Scholar
  16. [16]
    Barkhuijsen H, de Beer R, Bovée WMMJ, van Ormondt D. Retrieval of frequencies, amplitudes, damping factors and phases from time-domain signals using a linear least-squares procedure. J Magn Reson 1985;61:465–81.Google Scholar
  17. [17]
    Diop A, Briguet A, Graveron-Demilly D. Automatic in vivo NMR data processing based on an enhancement procedure and linear prediction method. Magn Reson Med 1992;27:318–28.PubMedCrossRefGoogle Scholar
  18. [18]
    Diop A, Zaim-Wadghiri Y, Briguet A, Graveron-Demilly D. Improvements of quantitation by using the Cadzow enhancement procedure prior to any linear prediction method. J Magn Reson Ser B 1994;105:17–24.CrossRefGoogle Scholar
  19. [19]
    Kolbel W, Schafer H. Improvement and automation of the LPSVD algorithm by continuous regularization of the singular values. J Magn Reson 1992;100:598–603.Google Scholar
  20. [20]
    Diop A. Kolbel W, Michel D, Briguet A, Graveron-Demilly D. Full automation of in vivo NMR quantification by LPSVD(CR) and EPLPSVD. J Magn Reson Ser B 1994;103:217–21.CrossRefGoogle Scholar
  21. [21]
    Totz J, van den Boogaart A, Van Huffel S, Graveron-Demilly D. Dologlou I. Heidler R, Michel D. The use of continuous regularization in the automated analysis of MRS time domain data. J Magn Reson 1997;124:400–9.CrossRefGoogle Scholar
  22. [22]
    Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997;129:35–43.PubMedCrossRefGoogle Scholar
  23. [23]
    van der Veen JWC, de Beer R. Luvten PR, van Ormondt D. Accurate quantification of in vivo31P-NMR signals using the variable projection method and prior knowledge. Magn Reson Med 1988;6:92–8.PubMedCrossRefGoogle Scholar
  24. [24]
    van den Boogaart A, van Ormondt D, Pijnappel W. de Beer R. Ala-Korpela M. Removal of the water resonance from1H-magnetic resonance spectra. In: McWhirter JG, editor. Mathematics in Signal Processing III. Oxford: Clarendon Press, 1994:175–95.Google Scholar
  25. [25]
    Vanhamme L, Fierro RD, Van Huffel S. de Beer R. Fast removal of residual water in proton spectra. J Magn Reson 1998;132:197–203.PubMedCrossRefGoogle Scholar
  26. [26]
    Antoine JP. Coron A, Dereppe JM. Water peak suppression: time-frequency versus time-scale approach. J Magn Reson 2000;144:189–94.PubMedCrossRefGoogle Scholar
  27. [27]
    Cavassila S, Fenet B, van den Boogaart A, Rémy C, Briguet A, Graveron-Demilly D. ER-Filter: a preprocessing technique for frequency-selective time-domain analysis. Magn Reson Anal 1997;3:87–92.Google Scholar
  28. [28]
    Barache D. Antoine JP, Dereppe JM. The continuous wavelet transform, an analysis tool for NMR spectroscopy. J Magn Reson 1997;128:1–11.CrossRefGoogle Scholar
  29. [29]
    Barkhuijsen H. de Beer R, van Ormondt D. Error theory for time-domain signal analysis with linear prediction and singular value decomposition. J Magn Reson 1986;67:371–5.Google Scholar
  30. [30]
    Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-De-milly D. The beneficial influence of prior knowledge on the quantitation of in vivo magnetic resonance spectroscopy signals. Invest Radiol 1999;34:242–6.PubMedCrossRefGoogle Scholar
  31. [31]
    Cavassila S. Deval S, Huegen C, van Ormondt D, Graveron-De-milly D. Cramér-Rao bound expressions for parametric estimation of overlapping peaks. Influence of prior knowledge. J Magn Reson 2000;143:311–20.PubMedCrossRefGoogle Scholar
  32. [32]
    Sundin T, Vanhamme L, Van Hecke P, Dologlou I, Van Huffei S. Accurate quantification of 1H spectra: from finite impulse response filter design for solvent suppression to parameter estimation. J Magn Rcson 1999; 139:189–204.CrossRefGoogle Scholar
  33. [33]
    Vanhammc L, Sundin T, Van Hecke P, Van Huffel S, Pintelon R. Frequency-selective quantification of biomedical magnetic resonance spectroscopy data. J Magn Reson 2000; 143:1–16.CrossRefGoogle Scholar
  34. [34]
    Vanhamme L, Van Huffel S, Van Hecke P, van Ormondt D. Time-domain quantification of series of biomedical magnetic resonance spectroscopy signals. J Magn Reson 1999; 140:120–30.PubMedCrossRefGoogle Scholar
  35. [35]
    Graveron-Demilly D, Diop A, Briguet A, Fenet B. Product-operator algebra for strongly coupled spin systems. J Magn Reson Ser A 1993;101:233–9.CrossRefGoogle Scholar
  36. [36]
    Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W. Object-Oriented Modeling and Design. Englewood Cliffs: Prentice Hall, 1991.Google Scholar
  37. [37]
    Booch G. Object-Oriented Analysis and Design. Redwood City: The Benjamin/Cummings Publishing Company, 1994.Google Scholar
  38. [38]
    Stroustrup B. The C + + Programming Language, third cd. Reading: Addison Wesley. 1997.Google Scholar
  39. [39]
    Fowler M. Scott K. UML Distilled. Applying the Standard Object Modeling Language. Reading: Addison Wesley, 1997.Google Scholar
  40. [40]
    Ambler SW. The Unified Modeling Language v1.l and Beyond: The Techniques of Object-Oriented Modeling. An AmbySoft Inc. White Paper. See: Scholar
  41. [41]
    Oaks S, Wong H. Java Threads. Cambridge: O’Reilly, 1997.Google Scholar
  42. [42]
    Java Native Interface Specification. Sun Microsystems, 1997.Google Scholar
  43. [43]
    Williams DM, Fencil L, Chenevert TL. Peripheral arterial occlusive disease: P-31 MR spectroscopy of calf muscle. Radiology 1990;175:381–5.PubMedGoogle Scholar
  44. [44]
    De Beer R, van den Boogaart A, Cady E. Graveron-Demilly D, Knijn A, Langenberger KW, Lindon JC, Ohlhoff A, Serrai H, Wylezinska-Arridge M. Absolute metabolite quantification by in vivo NMR spectroscopy: V. Multicentre quantitative data analysis trial on the overlapping background problem. Magn Reson Imaging 1998; 16:1127–37.CrossRefGoogle Scholar
  45. [45]
    Knijn A, de Beer R, van Ormondt D. Frequency-selective quantification in the time domain. J Magn Reson 1992;97:444–50.Google Scholar
  46. [46]
    De Beer R, van Ormondt D. Background features in magnetic resonance signals: addressed by SVD-based state space modeling. Appl Magn Reson 1994;6:379 -90.CrossRefGoogle Scholar
  47. [47]
    The Java Development Kit. See: Scholar
  48. [48]
    The Together J visual UML modeling tool. See:http:// Scholar
  49. [49]
    The GNU Fortran compiler. See: Scholar

Copyright information

© Elsevier Science B.V 2001

Authors and Affiliations

  • A. Naressi
    • 1
  • C. Couturier
    • 2
  • J. M. Devos
    • 3
  • M. Janssen
    • 4
  • C. Mangeat
    • 1
  • R. de Beer
    • 2
  • D. Graveron-Demilly
    • 4
  1. 1.Facilität für Physik und GeowissenschaftenUniversität LeipzigLeipzigGermany
  2. 2.Department of Applied PhysicsUniversity of Technology DelftG A DelftThe Netherlands
  3. 3.Signal Processing Laboratory National Technical University of AthensAthensGreece
  4. 4.Laboratoire de RUN, CNRS UMR Q5012Université Claude Bernard LyonI-CPE, 43 Boulevard du 11 Novembre 191 SVilleurbanne CédexFrance

Personalised recommendations