Advertisement

Facies

, 46:169 | Cite as

Taphonomy of larger foraminifera: Relationships between living individuals and empty tests on flat reef slopes (Sesoko Island, Japan)

  • Elza K. Yordanova
  • Johann Hohenegger
Article

Summary

The depth distributions of larger foraminifera (27 species) were investigated along two transects in the fore reef areas of a NW Pacific fringing reef. One transect is distinguished by a strong flattening below the steep reef slope (−30 m), whereas further steepening characterizes the equivalent part in the other transect. According to the different taphonomic processes affecting foraminiferal tests before final sedimentation, empty tests were classified into the three categories ‘optimally’, ‘well’ and ‘poorly’ preserved. The depth distribution of each preservation state was compared with living individuals. While distributions of optimally preserved tests almost coincide with living individuals, well-preserved tests are characterized by significant depth shifts that are stronger at the upper-most slope compared with the deeper parts. Since the time-averaged traction forces are similar in both investigated transects, differences between the distributions of living individuals and well-preserved tests are more intensive on steep versus flat slopes. Poorly preserved tests signalize allochthonous origin or reworking of relict sediments.

Keywords

Larger foraminifera Depth Distribution Taphonomy Transport Reworking Japan Recent 

References

  1. Bearman, G. (1989): Waves, Tides and Shallow Water Processes. The Open University.—187 pp., Oxford (Pergamon Press).Google Scholar
  2. Belasky, P. (1996): Biogeography of Indo-Pacific larger foraminifera and scleractinian corals: A probabilistic approach to estimating taxonomic diversity, faunal similarity, and sampling bias.—Paleogeogr. Paleoclimat. Paleoecol., 122, 119–141, Amsterdam.CrossRefGoogle Scholar
  3. Cottey, T. L. and Hallock, P. (1988): Test surface degradation inarchaias angulatus.—J. Foram. Res.,18, 187–202, Washington, DC.CrossRefGoogle Scholar
  4. Cushman, J. A., Todd, R. and Post, R. J. (1954): Recent Foraminifera of the Marshall Islands.—Geol. Surv. Prof. Paper,260-H, 319–384, Washington, DC.Google Scholar
  5. Glenn-Sullivan, E. and Evans, I. (2001): The effects of time-averaging and taphonomy on the identification of reefal subenvironments using larger foraminifera: Apo Reef, Mindoro, Philippines.—Palaios,16, 399–408, Tulsa.CrossRefGoogle Scholar
  6. Gudmundsson, G. (1994): Phylogeny, ontogeny and systematics of Recent Soritacea Ehrenberg 1839 (Foraminiferida).—Micropaleontoly, 40, 101–155, New York.CrossRefGoogle Scholar
  7. Hallock, P. (1999): Symbiont bearing foraminifera.—In: Sen Gupta, B. K. (ed.). Modern Foraminifera, 123–139, Dordrecht (Kluwer Academic Publishers).Google Scholar
  8. Hallock, P. and Glenn, E.C. (1986): Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies.—Palaios,1, 55–64, Tulsa.CrossRefGoogle Scholar
  9. Hatta, A. and Ujiie, H. (1992): Benthic Foraminifera from Coral Seas between Ishigaki and Iriomote Islands, Southern Ryukyu Island Arc, Northwestern Pacific. Part 1. Systematic descriptions of Textulariina and Miliolina.—Bull. Coll. Sc. Univ. Ryukyus, 53, 49–119, Nishihara, Okinawa.Google Scholar
  10. Henrich, R. and Wefer, G. (1986): Dissolution of biogenic carbonates: Effects of skeletal structure.—Mar. Geol.,71, 341–362, Amsterdam.CrossRefGoogle Scholar
  11. Hohenegger, J. (1995): Depth estimation by proportions of living larger foraminifera.—Mar. Micropaleont.,26, 31–478, Amsterdam.CrossRefGoogle Scholar
  12. Hohenegger, J. (1999): Larger Foraminifera-Microscopical Geenhouses indicating Shallow-Water Tropical and Subtropical Environments in the Present and Past.-Kagoshima Univ. Res. Center Pacific Islands, Occasional Papers,32, 19–45, Kagoshima.Google Scholar
  13. — (2000): Coenoclines of larger foraminifera.—Micropaleont.,46, suppl. 1, 127–151, New York.Google Scholar
  14. Hohenegger, J., and Yordanova, E. (2001a): Displacement of larger foraminifera at the western slope of Motobu Peninsula (Okinawa, Japan).—Palaios,16, 53–72, Tulsa.CrossRefGoogle Scholar
  15. Hohenegger, J. and Yordanova, E. (2001b): Depth-transport functions and erosion-deposition diagrams as indicators of slope inclination and time-averaged traction forces: applications in tropical reef environments.—Sedimentology,48, 1025–1046, Oxford, UK.CrossRefGoogle Scholar
  16. Hohenegger, J., Yordanova, E. and Hatta, A. (2000): Remarks on West Pacific Nummulitidae (Foraminifera).—J. Foram. Res.,30, 3–28, Washington, DC.CrossRefGoogle Scholar
  17. Hohenegger, J., Yordanova, E., Nakano, Y. and Tatzreiter F. (1999): Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan.—Mar. Micropaleont.,36, 109–168, Amsterdam.CrossRefGoogle Scholar
  18. Hottinger, L. (1977): Foraminifères operculiniformes.—Mém. Mus. Hist. Nat., N. Sér. C, Sc. Terre,40, 159 pp., Paris.Google Scholar
  19. — (1983): Processes determining the distribution of larger Foraminifera in space and time.—Utrecht Micropaleont. Bull.,30, 239–253, Utrecht.Google Scholar
  20. — (1997): Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations.—Bull. Soc. Géol. France,168, 491–505, Paris.Google Scholar
  21. Hottinger, L. and Leutenegger, S. (1980): The structure of calcarinid foraminifera.—Schweiz. Paläont. Abh.,101, 115–151, Basel.Google Scholar
  22. Hottinger, L., Halicz, E., and Reiss, Z. (1993): Recent Foraminiferida from the Gulf of Aqaba, Red Sea.—Dela Slovenska Akad. Znanosti in Umetnosti, Razred za naravoslovne vede, Classis IV: Historia naturalis, 33, VI+179pp., Ljubljana.Google Scholar
  23. Kotler, E., Martin, R.E., and Liddel, W.D. (1992): Experimental analysis of abrasion and dissolution resistance of modern reefdwelling foraminifera: Implication for the preservation of biogenic carbonate.—Palaios,7, 244–276, Tulsa.CrossRefGoogle Scholar
  24. Langer, M.R. and Hottinger, L. (2000): Biogeography of selected ‘larger’ foraminifera.—Micropaleont.,46, suppl. 1, 105–126, New York.Google Scholar
  25. Larsen, A. R. (1976): Studies of RecentAmphistegina, taxonomy and some ecological aspects.—Israel J. Earth Sc.,25, 1–26. Tel Aviv.Google Scholar
  26. Li, C.B. and Kalbfleisch, W.B.C. (1998): Carbonate sediment transport pathways based on foraminifera: case study from Frank Sound, Grand Cayman, British West Indies.—Sedimentology,45, 109–120, Oxford.CrossRefGoogle Scholar
  27. Lipps, J.H. (1988): Predation of Foraminifera by coral reef fish: Taphonomy and evolutionary implications.—Palaois,3, 315–326, Tulsa, OK.CrossRefGoogle Scholar
  28. Loeblich, A.R., and Tappan, H. (1988): Foraminiferal Genera and their Classification.—2 vol., 970 pp., New York (Van Nostrand Reinhold).Google Scholar
  29. Loeblich, A.R., and Tappan, H. (1994): Foraminifera of the Sahul Shelf and Timor Sea.—661 pp., Cushman Found. Foram. Res. Spec. Publ., 31.Google Scholar
  30. Maiklem, W.R. (1967): Black and brown speckled foraminiferal sand from the southern part of the great barrier reef.—J. Sedim. Petr., 37, 1023–1030, Tulsa, OK.Google Scholar
  31. Maiklem, W.R. (1968): Some hydraulic properties of bioclastic carbonate grains.—Sedimentology10, 101–109, Oxford.CrossRefGoogle Scholar
  32. Martin, R.E., and Lidell, W.D. (1991): The taphonomy of foraminifera in modern carbonate environments: Implications for the formation of foraminiferal assemblages.—In: Donovan, S.K. (ed.): The Processes of Fossilization.—170–193. London (Belhaven Press).Google Scholar
  33. Murray, J.W. (1973): Distribution and Ecology of Living Benthic Foraminiferides.—XII+274pp., London (Heinemann).Google Scholar
  34. Murray, J.W. (1984): Benthic foraminifera: Some relationships between evological observations and palaeoecological interpretations.—In: Benthos '83; 2nd Int. Symp. Benthic Foram., 465–469, Pau and Bordeaux.Google Scholar
  35. Parsons, K.M. and Brett C.E. (1991): Taphonomic processes and biases in modern marine environments: An actualistic perspective on fossil assemblage preservation.—In: Donovan, S.K. (ed.): The Processes of Fossilization.—22–65, London: (Belhaven Press).Google Scholar
  36. Peebles, M.W. and Lewis, R.D. (1988): Differential infestation of Shallow-water benthic foraminifera by microboring organisms: Possible biases in preservation potential.—Palaios,3, 345–351, Tulsa, OK.CrossRefGoogle Scholar
  37. Peebles, M.W. and Lewis, R.D. (1991): Surface textures of benthic foraminifera from San Salvador, Bahamas.—J. Foram. Res.,21, 285–292, Washington.Google Scholar
  38. Ross, C.A. (1972): Biology and ecology ofMarginopora vertebralis (Froaminifera), Great barrier Reef.—J. Protozool,19, 181–192, Utica.Google Scholar
  39. Rögl, F. and Hansen, H.J. (1984): Foraminfera described by Fichtel and Moll in 1798. A revision of Testacea Microscopica: —Neue Denkschriften des Naturhistorischen Museums in Wien,3, 143 pp.Google Scholar
  40. Severin, K.P. and Lipps, J.H. (1989): The weight-volume relationship of the tests ofAlveolinella quoyi. Implications for the taphonomy of large fusiform foraminifera.—Lethaia,22, 1–12, Oslo.Google Scholar
  41. Shroba, C.S. (1993): Taphonomic features of benthic foraminifera in a temperate setting: Experimental and field observations on the role of abrasion, solution and microboring in the destruction of foraminiferal tests.—Palaios,8, 250–266, Tulsa.CrossRefGoogle Scholar
  42. Song, Y., Black, R.G. and Lipps, J.H. (1994). Morphological optimization in the largest living foraminifera: implications from finite element analysis.—Paleobiology,20, 14–26, Washington, DC.Google Scholar
  43. Stoddart, D.R. (1978): Mechanical analysis of reef sediments.—In: Stoddart, D.R. and Johannes, R.E. (eds.): Coral Reefs: Research Methods.—53–66, Paris (Unesco).Google Scholar
  44. Survey of the Hydrographic Department, M.S.A. (1987): Ie Sima. Submarine Structural Charts and Report of Survey: 2 maps, 53 pp., Tokyo (Maritime Safety Agency).Google Scholar
  45. Ujiité, H., and Shioya, F. (1980): Sediment in the Bay of Nago and around the island of Sesoko, Okinawa.—Sesoko Mar. Sc. Lab. Tech. Report,7, 1–17, Naha, Okinawa.Google Scholar
  46. Wetmore, K.L., and Plotnick, R.E. (1992): Correlations between test morphology, crushing strength, and habitat inAmphistegina gibbosa, Archaias angulatus andLaevipeneroplis proteus from Bermuda.—J. Foram. Res.,22, 1–12, Washington, DC.CrossRefGoogle Scholar
  47. Yamanouchi, H. (1993): Sandy sediments on the coral reef and beach of northwest Sesoko Island, Okinawa.—Galaxea,11, 107–133, Nishihara, Okinawa.Google Scholar
  48. Yordanova, E. (1998): Beziehungen zwischen lebenden Individuen und Totengemeinschaften von Grossforaminiferen am Riffhang NW von Sesoko, Okinawa, Japan.—217 pp., Unpublished Thesis, University of ViennaGoogle Scholar

Copyright information

© Institut für Palaentologie, Universitat Erlangen 2002

Authors and Affiliations

  • Elza K. Yordanova
    • 1
  • Johann Hohenegger
    • 1
  1. 1.Institut für PaläontologieUniversität WienWienAustria

Personalised recommendations