Metallurgical Transactions A

, Volume 8, Issue 7, pp 1131–1140 | Cite as

Influence of impurity segregation on temper em brittlement and on slow fatigue crack growth and threshold behavior in 300-M high strength steel

  • Robert O. Ritchie
Mechanical Behavior

Abstract

Interactions between hydrogen embrittlement and temper embrittlement have been examined in a study of fracture and low growth rate (near-threshold) fatigue crack propagation in 300-M high strength steel, tested in humid air. The steel was investigated in an unembrittled condition (oil quenched after tempering at 650°C) and temper embrittled condition (step-cooled after tempering at 650°C). Step-cooling resulted in a severe loss of toughness (approximately 50 pct reduction), without loss in strength, concurrent with a change in fracture mode from micr ovoid coalescence to inter granular. Using Auger spectroscopy analysis, the embrittlement was attributed to the cosegregation of alloying elements (Ni and Mn) and impurity elements (P and Si) to prior austenite grain boundaries. Prior temper embrittlement gave rise to a substantial reduction in resistance to fatigue crack propagation, particularly at lower stress intensities approaching the threshold for crack growth(x0394;Ko). At intermediate growth rates (10-5 to 10-3 mmJcycle), propagation rates in both unembrittled and embrittled material were largely similar, and only weakly dependent on the load ratio, consistent with the striation mechanism of growth observed. At near-threshold growth rates (<10−5 to 10−6 mmJcycle), embrittled material exhibited significantly higher growth rates, 30 pct reduction in threshold ΔKo values and intergranular facets on fatigue fracture surfaces. Near-threshold propagation rates (and ΔKo values) were also found to be strongly dependent on the load ratio. The results are discussed in terms of the combined influence of segregated impurity atoms (temper embrittlement) and hydrogen atoms, evolved from crack tip surface reactions with water vapor in the moist air environment (hydrogen embrittlement). The significance of crack closure concepts on this model is briefly described. ntmis]formerly with the Lawrence Berkeley Laboratory, University of California in Berkeley.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Low, Jr.: inFracture of Engineering Materials, ASM, 1964, p. 127.Google Scholar
  2. 2.
    J. R. Low, Jr., D. F. Stein, A. M. Turkalo, and R. P. Laforce:Trans. TMS-AIME, 1968, vol. 242, p. 14.Google Scholar
  3. 3.
    H. Ohtani and C. J. McMahon, Jr.:ActaMet., 1975, vol. 23, p. 377.Google Scholar
  4. 4.
    J. M. Capus:Rev. Met., 1959, vol. 56, p. 181.Google Scholar
  5. 5.
    E. B. Kula and A. A. Anctil:J. Mater., 1969, vol. 4, p. 817.CrossRefGoogle Scholar
  6. 6.
    J. R. Rellick and C. J. McMahon, Jr.:Met. Trans., 1974, vol. 5, p. 2439.CrossRefGoogle Scholar
  7. 7.
    R. O. Ritchie and J. F Knott.Knott: Acta Met., 1973, vol. 21, p. 639.CrossRefGoogle Scholar
  8. 8.
    R. Bruscato:Weld. J. Suppl., 1970, vol. 49, p. 148-S.Google Scholar
  9. 9.
    K. Yoshino and C. J. McMahon, Jr.:Met. Trans., 1974, vol. 5, p. 363.Google Scholar
  10. 10.
    C. J. McMahon, Jr, C. L. Briant, and S. K. Banerji:Proc. Fourth Int. Conf. on Fracture, Waterloo, Canada, June 1977, vol. 2, p. 363.Google Scholar
  11. 2.
    .U.R. Viswanathan and S. J. Hudak: inEffect of Hydrogen on Behavior of Materials, A.W. Thompson and I. M. Bernstein, eds., p. 262, 1975. The Metal-lurgical Society of AIME.Google Scholar
  12. 12.
    R. M. Latanison and H. Opperhauser, Jr.:Met. Trans., 1974, vol. 5, p. 483.Google Scholar
  13. 13.
    R. P. Wei and J. D. Landes:Mater. Res. Stand., 1969, vol. 9, p. 25.Google Scholar
  14. 14.
    F. J. Witt: inPractical Application of Fracture Mechanics to Pressure-Vessel Technology, p. 163, The Institution of Mechanical Engineers, London, 1971.Google Scholar
  15. 2.
    .J. D. Landes and J. A. Begley: Westinghouse Scientific Paper 76-1E7-JINTF-P3, May 1976, Westinghouse Scientific Laboratories, Pittsburgh, Pa.Google Scholar
  16. 16.
    R. W. Landgraf, J-D. Morrow, and T. Endo:J. Mater., 1969, vol. 4, p. 176.Google Scholar
  17. 17.
    R. 0. Ritchie, G. G. Garrett, and J. F. Knott:Int. J. Fract. Mech., 1971, vol. 7, p. 462.Google Scholar
  18. 18.
    H. Ohtani, H. C. Feng, C. J. McMahon, Jr., and R. A. Mulford:Met. Trans. A, 1976, vol. 7A, p. 87.CrossRefGoogle Scholar
  19. 19.
    M. Guttmann:Surface Sci., 1975, vol. 52, p. 213.CrossRefGoogle Scholar
  20. 20.
    R. A. Mulford, C. J. McMahon, Jr., D. P. Pope, and H. C. Feng:Met. Trans. A, 1976, vol. 7A, p. 1183.Google Scholar
  21. 21.
    C. J. McMahon, Jr, E. Furubayashi, H. Ohtani, and H. C. Feng:ActaMet., 1976, vol. 24, p. 695.Google Scholar
  22. 22.
    R. Viswanathan:Met. Trans., 1971, vol. 2, p. 809.Google Scholar
  23. 23.
    B. J. Schulz and C. J. McMahon, Jr.: inTemper Embrittlement of Alloy Steels, p. 104, ASTM STP 499, ASTM, Philadelphia, Pa., 1972.Google Scholar
  24. 24.
    G. Clark, R. 0. Ritchie, and J. F. Knott:Nature Phys. Sci., 1972, vol. 239, p. 104.Google Scholar
  25. 25.
    M. Guttmann and P. Krahe:Scr. Met., 1973, vol. 7, p. 93.CrossRefGoogle Scholar
  26. 26.
    C. L. Smith and J. R. Low, Jr.:Met. Trans., 1974, vol. 5, p. 279.Google Scholar
  27. 27.
    W. Steven and K. Balajiva:J. Iron SteelInst., 1959, vol. 193, p. 141.Google Scholar
  28. 28.
    P. C. Paris and F. Erdogan:J. Basic Eng., Trans. ASME Series D, 1963, vol. 85, p. 528.Google Scholar
  29. 29.
    C. E. Richards and T. C. Lindley:Eng. Fract. Mech., 1972, vol. 4, p. 951.CrossRefGoogle Scholar
  30. 30.
    R. O. Ritchie:J. Eng. Mater. Tech., Trans. ASME Series H, 1977, vol. 99, p. 194. (Lawrence Berkeley Laboratory, Report No. LBL-5496, Oct. 1976, University of California).Google Scholar
  31. 31.
    P. C. Paris. R. J. Bucci, E. T. Wessel, W. G. Clark, and T. R. Mager: inStress Analysis and Growth of Cracks, p. 141, ASTM STP 513, ASTM, Philadelphia, Pa., 1972.Google Scholar
  32. 2.
    R. J. Bucci, W. G. Clark, Jr., and P. C. Paris: itIbid, p. 177.Google Scholar
  33. 2.
    R. J. Bucci, P. C. Paris, R. W. Hertzberg, R. A. Schmidt, and A. F. Anderson: itIbid, p. 125Google Scholar
  34. 2.
    34.R. A. Schmidt and P. C. Paris: inProgress in Flaw Growth and Fracture Toughness Testing, p. 79, ASTM STP 536, ASTM, Philadelphia, Pa, 1972.Google Scholar
  35. 35.
    P. E. Irving and C. J. Beevers:Met. Trans., 1974, vol. 5, p. 391.Google Scholar
  36. 36.
    R. J. Cooke, P. E. Irving, G. S. Booth, and C. J. Beevers:Eng. Fract. Mech., 1975, vol. 7, p. 69.CrossRefGoogle Scholar
  37. 37.
    J. A. Begley and P. R. Toolin:Int. J. Fract., 1973, vol. 9, p. 243.CrossRefGoogle Scholar
  38. 38.
    R. 0. Ritchie:Metal Sci., 1977, vol. 11, no. 8J9, in press. (Lawrence Berkeley Laboratory, Report No. LBL-5730, Nov. 1976, University of California.) tory, Report No. LBL-5730, Nov. 1976, University of California.)Google Scholar
  39. 39.
    V. Weiss and D. N. Lai:Met. Trans., 1974, vol. 5, p. 1946.CrossRefGoogle Scholar
  40. 40.
    T. Misawa:Corros. Sci., 1973, vol. 13, p. 659.CrossRefGoogle Scholar
  41. 41.
    A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.Google Scholar
  42. 42.
    E. D.Hondros:Proc. Roy. Soc. Ser. A, 1965, vol. 286, p. 479.CrossRefGoogle Scholar
  43. 43.
    R. A. Oriani and P. H. Josephic:ActaMet., 1974, vol. 22, p. 1065.Google Scholar
  44. 44.
    W. W. Gerberich and Y. T. Chen:Met. Trans. A, 1975, vol. 6A, p. 271.Google Scholar
  45. 45.
    W. Elber: inDamage Tolerance in Aircraft Structures, p. 230, ASTM STP 486, ASTM, Philadelphia, Pa., 1971.Google Scholar
  46. 46.
    T. C. Lindley and C. E. Richards:Mater. Sci. Eng., 1974, vol. 14, p. 281.CrossRefGoogle Scholar
  47. 47.
    F. J. Pitoniak, A. F. Grandt, L. T. Montulli, and P. F. Packman:Eng. Fract. Mech., 1974, vol. 6, p. 663.CrossRefGoogle Scholar
  48. 48.
    T. T. Shih and R. P. Wei:Ibid, 1974, vol. 6, p. 19.Google Scholar
  49. 49.
    A. J.McEvily: Metal Sci., 1977, vol.11, no. 8/9, in press.Google Scholar
  50. 50.
    A. Otsuka, K. Mori, and T. Miyata:Eng. Fract. Mech., 1975, vol. 7, p. 429.CrossRefGoogle Scholar
  51. 51.
    0. Buck, J. D. Frandsen, and H. L. Marcus:Ibid, 1975, vol. 7, p. 167.Google Scholar
  52. 52.
    P. E. Irving, J. L. Robinson, and C. J. Beevers:Ibid, 1975, vol. 7, p. 619.Google Scholar
  53. 53.
    P. E. Irving, J. L. Robinson, and C. J. Beevers:Int. J. Fract., 1973, vol. 9, p. 105.Google Scholar
  54. 54.
    V. Bachmann and D. Munz:Ibid, 1975, vol. 11, p. 713.Google Scholar
  55. 55.
    C. J. McMahon, Jr.:Mater. Sci. Eng, 1977, vol. 25, p. 233.Google Scholar
  56. 56.
    R. P. Wei and G. W. Simmons:Scr. Met., 1976, vol. 10, p. 153.CrossRefGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1977

Authors and Affiliations

  • Robert O. Ritchie
    • 1
  1. 1.Department of Me-chanical EngineeringMassachusetts Institute of TechnologyCambridge

Personalised recommendations