Metallurgical Transactions B

, Volume 15, Issue 2, pp 213–219 | Cite as

A mathematical model for calculation of equilibrium solution speciations for the FeCl3-FeCl2-CuCl2-CuCl-HCl-NaCl-H2O system at 25 ‡C

  • Richard T. Kimura
  • Peter A. Haunschild
  • Knona C. Liddell
Hydrometallurgy

Abstract

Equilibrium solution speciation computations were performed for the FeCl-FeCl3-CuCl2-CuCl-HCl-NaCl-H2O system at 25 ‡C. In dilute solutions, complexation of Fe(III), Fe(II), and Cu(II) is insignificant but the major Cu(I) species is CuCl2-. In concentrated solutions, FeCl30, FeCl20, and CuCl20 are the major Fe(III), Fe(II), and Cu(II) species, and CuCl32- is the most important cuprous complex. High Cu(I)/Cu(II) ratios are apparently more readily attainable in CuCl2 than in FeCl3 media. The Cu(I)/Cu(II) ratio is increased by making the solution more concentrated in any component except FeCl3 or CuCl2. Neither the ionic strength nor the total chloride concentration is a good predictor of the Cu(I)/Cu(II) ratio.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Wilson and W. W. Fisher:J. Metals, 1981, vol. 33, no. 2, pp. 52–57.Google Scholar
  2. 2.
    K. C. Liddell and R. G. Bautista:Metall. Trans. B, 1981, vol. 12B, pp. 627–37.Google Scholar
  3. 3.
    H. Freiser and Q. Fernando:Ionic Equilibria in Analytical Chemistry, John Wiley, New York, NY, 1963, pp. 51–52.Google Scholar
  4. 4.
    W. Stumm and J. J. Morgan:Aquatic Chemistry, 1sted., John Wiley, New York, NY, 1970, p. 83.Google Scholar
  5. 5.
    R. M. Garrels and C. L. Christ:Solutions, Minerals, and Equilibria, Harper and Row, New York, NY, 1965, pp. 64–67.Google Scholar
  6. 6.
    D. D. Wagman, W. H. Evans, V. B. Parker, I. Harlow, S. M. Bailey, and R. H. Schumm: National Bureau of Standards, Technical Note 270-3, U.S. Government Printing Office, Washington, DC, 1968.Google Scholar
  7. 7.
    J. J. Fritz:J. Phys. Chem., 1980, vol. 84, pp. 2241–46.CrossRefGoogle Scholar
  8. 8.
    R. M. Smith and A. E. Martell:Critical Stability Constants, vol. 4: Inorganic Complexes, Plenum Press, New York, NY, 1976, pp. 105–06.Google Scholar
  9. 9.
    H. C. Helgeson:Amer. J. Sci., 1969, vol. 267, pp. 729–804.Google Scholar
  10. 10.
    J. N. Butler:Ionic Equilibria: A Mathematical Approach, Addison- Wesley, New York, NY, 1964, pp. 467–68.Google Scholar
  11. 11.
    B. Carlssonand,G. Wettermark:J. Inorg.Nucl.Chem., 1976, vol. 38, pp. 1525–27.CrossRefGoogle Scholar
  12. 12.
    L. G. Sillen and A. E. Martell:Stability Constants, Special Publication No. 17, The Chemical Society, London, 1964.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1984

Authors and Affiliations

  • Richard T. Kimura
    • 1
  • Peter A. Haunschild
    • 2
  • Knona C. Liddell
    • 3
  1. 1.Mobil Oil CorporationFerndaleWA
  2. 2.National SemiconductorSanta ClaraCA
  3. 3.Chemical Engineering DepartmentWashington State UniversityPullmanWA

Personalised recommendations