Advertisement

Metallurgical Transactions A

, 20:2217 | Cite as

Mechanical properties of thin films

  • William D. Nix
The 1988 Institute of Metals Lecture The Minerals, Metals & Materials Society

Abstract

The mechanical properties of thin films on substrates are described and studied. It is shown that very large stresses may be present in the thin films that comprise integrated circuits and magnetic disks and that these stresses can cause deformation and fracture to occur. It is argued that the approaches that have proven useful in the study of bulk structural materials can be used to understand the mechanical behavior of thin film materials. Understanding the mechanical properties of thin films on substrates requires an understanding of the stresses in thin film structures as well as a knowledge of the mechanisms by which thin films deform. The fundamentals of these processes are reviewed. For a crystalline film on a nondeformable substrate, a key problem involves the movement of dislocations in the film. An analysis of this problem provides insight into both the formation of misfit dislocations in epitaxial thin films and the high strengths of thin metal films on substrates. It is demonstrated that the kinetics of dislocation motion at high temperatures are expecially important to the understanding of the formation of misfit dislocations in heteroepitaxial structures. The experimental study of mechanical properties of thin films requires the development and use of nontraditional mechanical testing techniques. Some of the techniques that have been developed recently are described. The measurement of substrate curvature by laser scanning is shown to be an effective way of measuring the biaxial stresses in thin films and studying the biaxial deformation properties at elevated temperatures. Submicron indentation testing techniques, which make use of the Nanoindenter, are also reviewed. The mechanical properties that can be studied using this instrument are described, including hardness, elastic modulus, and time-dependent deformation properties. Finally, a new testing technique involving the deflection of microbeam samples of thin film materials made by integrated circuit manufacturing methods is described. It is shown that both elastic and plastic properties of thin film materials can be measured using this technique.

Keywords

Metallurgical Transaction Misfit Dislocation Biaxial Stress Thin Film Material Epitaxial Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. E. Henein and W. R. Wagner:J. Appl. Phys., 1983, vol. 54, pp. 6395–6400.CrossRefGoogle Scholar
  2. 2.
    K. Roll:J. Appl. Phys., 1976, vol. 47, pp. 3224–29.CrossRefGoogle Scholar
  3. 3.
    P. H. Townsend, D. M. Barnett, and T. A. Brunner:J. Appl. Phys., 1987, vol. 62, pp. 4438–44.CrossRefGoogle Scholar
  4. 4.
    J. H. van der Merwe:J. Appl. Phys., 1963, vol. 34, pp. 123–27.CrossRefGoogle Scholar
  5. 5.
    J. W. Matthews and A. E. Blakeslee:J. Cryst. Growth, 1974, vol. 27, pp. 118–25.Google Scholar
  6. 6.
    J. W. Matthews and A. E. Blakeslee:J. Cryst. Growth, 1975, vol. 29, pp. 273–80.CrossRefGoogle Scholar
  7. 7.
    J. W. Matthews:J. Vac. Sci. Technol., 1975, vol. 12, pp. 126–33.CrossRefGoogle Scholar
  8. 8.
    E. Kaspar and H.-J. Herzog:Thin Solid Films, 1977, vol. 44, pp. 357–70.CrossRefGoogle Scholar
  9. 9.
    J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson:J. Vac. Sci. Technol. A, 1984, vol. 2, pp. 436–40.CrossRefGoogle Scholar
  10. 10.
    J. Y. Tsao, B. W. Dodson, S. T. Picraux, and D. M. Cornelison:Phys. Rev. Lett., 1987, vol. 59, pp. 2455–58.CrossRefGoogle Scholar
  11. 11.
    C. Gronet: Ph.D. Dissertation, Stanford University, Stanford, CA, 1988.Google Scholar
  12. 12.
    Y. Kohama, Y. Fukuda, and M. Seki:Appl. Phys. Lett., 1988, vol. 52, pp. 380–82.CrossRefGoogle Scholar
  13. 13.
    P. L. Gourley, I. J. Fritz, and L. R. Dawson:Appl. Phys. Lett., 1988, vol. 52, pp. 377–79.CrossRefGoogle Scholar
  14. 14.
    P. M. J. Maree, J. C. Barbour, J. F. van der Veen, K. L. Kavanagh, C. W. T. Bulle-Lieuwma, and M. P. A. Viegers:J. Appl. Phys., 1987, vol. 62, pp. 4413–20.CrossRefGoogle Scholar
  15. 15.
    R. Hull, J. C. Bean, D. J. Werder, and R. E. Leibenguth:Appl. Phys. Lett., 1988, vol. 52, pp. 1605–07.CrossRefGoogle Scholar
  16. 16.
    B. W. Dodson and J. Y. Tsao:Appl. Phys. Lett., 1987, vol. 51, pp. 1325–27.CrossRefGoogle Scholar
  17. 17.
    L. B. Freund:J. Appl. Mech., 1987, vol. 54, pp. 553–57.CrossRefGoogle Scholar
  18. 18.
    D. M. Barnett: Stanford University, Stanford, CA, private communication, 1987.Google Scholar
  19. 19.
    P. Haasen and H. Alexander:Solid State Physics, 1968, vol. 22, pp. 27–158.Google Scholar
  20. 20.
    H. Steinhardt and S. Schafer:Acta Metall., 1971, vol. 19, pp. 65–70.CrossRefGoogle Scholar
  21. 21.
    H. Steinhardt and P. Haasen:Phys. Status Solidi A, 1978, vol. 49, pp. 93–101.CrossRefGoogle Scholar
  22. 22.
    W. Hagen and H. Strunk:J. Appl. Phys., 1978, vol. 17, pp. 85–87.CrossRefGoogle Scholar
  23. 23.
    K. Rajan and M. Denhoff:J. Appl. Phys., 1987, vol. 62, pp. 1710–16.CrossRefGoogle Scholar
  24. 24.
    P. A. Flinn, D. S. Gardner, and W. D. Nix:IEEE Trans. on Electron Devices, 1987, vol. ED-34, pp. 689–99.Google Scholar
  25. 25.
    M. F. Doerner and S. Brennan:J. Appl. Phys., 1988, vol. 63, pp. 126–31.CrossRefGoogle Scholar
  26. 26.
    P. H. Townsend: Ph.D. Dissertation, Stanford University, Stanford, CA, 1987.Google Scholar
  27. 27.
    D. S. Gardner, T. L. Michalka, P. A. Flinn, T. W. Barbee, Jr.: K. C. Saraswat, and J. D. Meindl:Proc. 2nd Int. IEEE VLSI Multilevel Interconnection Conf., 1985, pp. 102–10.Google Scholar
  28. 28.
    T. S. Kuan and M. Murakami:Metall. Trans. A, 1982, vol. 13A, pp. 383–91.Google Scholar
  29. 29.
    M. F. Doerner, D. S. Gardner, and W. D. Nix:J. Mater. Res., 1986, vol. 1, pp. 845–51.Google Scholar
  30. 30.
    M. F. Doerner: Ph.D. Dissertation, Stanford University, Stanford, CA, 1987.Google Scholar
  31. 31.
    N. Hansen:Acta Metall., 1977, vol. 25, pp. 863–69.CrossRefGoogle Scholar
  32. 32.
    R. W. Armstrong: inAdvances in Materials Research, H. Herman, ed., Interscience, New York, NY, 1970, vol. 4, pp. 101–46.Google Scholar
  33. 33.
    A. J. Griffin, Jr., F. R. Brotzen, and C. Dunn:Scripta Metall., 1986, vol. 20, pp. 1271–72.CrossRefGoogle Scholar
  34. 34.
    A. J. Griffin, Jr., F. R. Brotzen, and C. Dunn:Thin Solid Films, 1987, vol. 150, pp. 237–44.CrossRefGoogle Scholar
  35. 35.
    M. Nishibori and K. Kinosita:Thin Solid Films, 1978, vol. 48, pp. 325–31.CrossRefGoogle Scholar
  36. 36.
    D. Newey, M. A. Wilkins, and H. M. Pollock:J. Phys. E, 1982, vol. 15, pp. 119–22.CrossRefGoogle Scholar
  37. 37.
    J. Pethica, R. Hutchings, and W. C. Oliver:Phil. Mag., 1983, vol. A48, pp. 593–606.CrossRefGoogle Scholar
  38. 38.
    J. L. Loubet, J. M. Georges, J. M. Marchesini, and G. Meille:J. Tribol., 1984, vol. 106, pp. 43–48.CrossRefGoogle Scholar
  39. 39.
    P. E. Wierenga and A. J. J. Franken:Philips Tech. Rev., 1985, vol. 42, pp. 85–92.Google Scholar
  40. 40.
    H. Bangert, A. Kaminitschek, A. Wagendristel, A. Barna, P. B. Barna, and G. Radnoczi:Thin Solid Films, 1986, vol. 137, pp. 193–98.CrossRefGoogle Scholar
  41. 41.
    S.-P. Hannula, D. Stone, and C.-Y. Li:Mater. Res. Symp. Proc., 1985, vol. 40, pp. 217–24.Google Scholar
  42. 42.
    D. Stone, W. R. LaFontaine, P. Alexopoulous, T.-W. Wu, and C.-Y. Li:J. Mater. Res., 1988, vol. 3, pp. 141–47.Google Scholar
  43. 43.
    J. B. Pethica and W. C. Oliver:Mater. Res. Symp. Proc., 1989, vol. 130, pp. 13–23.Google Scholar
  44. 44.
    D. Stone, W. LaFontaine, S. Ruoff, and C.-Y. Li:Mater. Res. Soc. Proc., 1986, vol. 72, pp. 43–49.Google Scholar
  45. 45.
    H.-Y. Yu and J. C. M. Li:J. Mater. Sci., 1977, vol. 12, pp. 2214–22.CrossRefGoogle Scholar
  46. 46.
    H.-Y. Yu, M. A. Iman, and B. B. Rath:J. Mater. Sci., 1985, vol. 20, pp. 636–42.CrossRefGoogle Scholar
  47. 47.
    H.-Y. Yu, S. C. Sanday, and B. B. Rath:Naval Research Laboratory Report, Report No. 9168, Naval Research Laboratory, Washington, DC, Jan. 12, 1989.Google Scholar
  48. 48.
    M. F. Doerner and W. D. Nix:J. Mater. Res., 1986, vol. 1, pp. 601–09.Google Scholar
  49. 49.
    I. N. Sneddon:Int. J. Eng. Sci., 1965, vol. 3, pp. 47–62.CrossRefGoogle Scholar
  50. 50.
    R. B. King:Int. J. Solids Struct., 1987, vol. 23, pp. 1657–64.CrossRefGoogle Scholar
  51. 51.
    T. F. Page, W. C. Oliver, and C. J. McHargue:J. Mater. Sci., in press.Google Scholar
  52. 52.
    A. K. Bhattacharya and W. D. Nix:Int. J. Solids Struct., 1988, vol. 24, pp. 1287–98.CrossRefGoogle Scholar
  53. 53.
    M. J. Mayo and W. D. Nix:Acta Metall., 1988, vol. 36, pp. 2183–92.CrossRefGoogle Scholar
  54. 54.
    M. J. Mayo and W. D. Nix:Proc. 8th Int. Conf. on Strength of Metals and Alloys, Tampere, Finland, P. O. Kettunen, T. K. Lepisto, and M. E. Lehtonen, eds., Pergamon Press, Oxford, 1988, pp. 1415–20.Google Scholar
  55. 55.
    M. J. Mayo: Sandia National Laboratories, Albuquerque, NM, unpublished research, 1989.Google Scholar
  56. 56.
    T. P. Weihs, S. Hong, J. C. Bravman, and W. D. Nix:J. Mater. Res., 1988, vol. 3, pp. 931–42.Google Scholar
  57. 57.
    T. P. Weihs, S. Hong, J. C. Bravman, and W. D. Nix:Mater. Res. Symp. Proc., 1989, vol. 130, pp. 87–92.Google Scholar
  58. 58.
    S. Hong, T. P. Weihs, J. C. Bravman, and W. D. Nix:Mater. Res. Symp. Proc., 1989, vol. 130, pp. 93–98.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 1989

Authors and Affiliations

  • William D. Nix

There are no affiliations available

Personalised recommendations