Journal of Electronic Materials

, Volume 22, Issue 1, pp 3–16 | Cite as

New materials and structures for photovoltaics

  • Alex Zunger
  • S. Wagner
  • P. M. Petroff
Special Issue Paper

Abstract

Despite the fact that over the years crystal chemists have discovered numerous semiconducting substances, and that modern epitaxial growth techniques are able to produce many novel atomic-scale architectures, current electronic and opto-electronic technologies are based but on a handful of ∼10 traditional semiconductor core materials. This paper surveys a number of yet-unexploited classes of semiconductors, pointing to the much-needed research in screening, growing, and characterizing promising members of these classes. In light of the unmanageably large number of a-priori possibilities, we emphasize the role that structural chemistry and modern computer-aided design must play in screening potentially important candidates. The basic classes of materials discussed here include nontraditional alloys, such as non-isovalent and heterostructural semiconductors, materials at reduced dimensionality, including superlattices, zeolite-caged nanostructures and organic semiconductors, spontaneously ordered alloys, interstitial semiconductors, filled tetrahedral structures, ordered vacancy compounds, and compounds based on d and f electron elements. A collaborative effort among material predictor, material grower, and material characterizer holds the promise for a successful identification of new and exciting systems.

Key words

New materials new structures photovoltaics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Recent books summarizing modern electronic structure methods includeElectronic, Structure, Dynamics, and Quantum-Structural Properties of Condensed Matter, eds. J.T. Devereese and D. Van-Camp (New York: Plenum, 1985). Also,The Electronic Structure of Complex Systems, Vol. 113 of NATO Advanced Study Institute, eds. P. Phariseau and W.M. Temmorman (New York: Plenum, 1982).Google Scholar
  2. 2.
    J.C. Woolley,Compound Semiconductors, eds. R.K. Willardson and H.L. Goering (New York: Reinhold, 1962).Google Scholar
  3. 3.
    Numerical Data and Functional Relationships in Science and Technology, Vol. 17 of Landolt-Bornstein New Series (Berlin: Springer-Verlag).Google Scholar
  4. 4.
    M.B. Panish and M. Illegms,Prog. Solid State Chem. 7, 39 (1972); G.B. Stringfellow,J. Cryst. Growth 27, 21 (1976); 58, 194 (1982).CrossRefGoogle Scholar
  5. 5.
    J.A. Van Vechten and T. K. Bergstresser,Phys. Rev. B 1, 3351 (1970).CrossRefGoogle Scholar
  6. 6.
    J.E. Bernard and A. Zunger,Phys. Rev. B 36, 3199 (1987); 34, 5992 (1986).CrossRefGoogle Scholar
  7. 7.
    S.-H. Wei and A. Zunger,Phys. Rev. B 39, 3279 (1989).CrossRefGoogle Scholar
  8. 8.
    R. Magri, S. Froyen and A. Zunger,Phys. Rev. B 44, 7967 (1991); 43, 1662 (1991).Google Scholar
  9. 9.
    See M. Glicksman and W.D. Kraeft,Solid-State Electron. 28, 151 (1985) and references therein.CrossRefGoogle Scholar
  10. 10.
    D. Vanderbilt and C. Lee,Phys. Rev. B 45, 11, 192 (1992).CrossRefGoogle Scholar
  11. 11.
    R. Osorio, S. Froyen, and A. Zunger,Phys. Rev. B 43, 14,055 (1991).CrossRefGoogle Scholar
  12. 12.
    A. Aresti et al.,J. Electrochem. Soc. 124, 766 (1977); J.N. Gan et al.,Phys. Rev. B 13, 3610 (1976); L. Garbato and T. Ledda,J. Solid State Chem. 30, 189 (1979).CrossRefGoogle Scholar
  13. 13.
    S.-H. Wei, L.G. Ferreira and A. Zunger,Phys. Rev. B 41, 8240 (1990); L.G. Ferreira, S.-H. Wei and A. Zunger,Phys. Rev. B 40, 3197 (1989); A. Mbaye, L.G. Ferreira and A. Zunger,Phys. Rev. Lett. 58, 49 (1987).CrossRefGoogle Scholar
  14. 14.
    A. Sher, M. Van Schilfgaarde, A.B. Chen and W. Chen,Phys. Rev. B 36, 4279 (1987).CrossRefGoogle Scholar
  15. 15.
    R. Osorio, Z.W. Lu, S.-H. Wei and A. Zunger,Phys. Rev. B (in press); K. Newman and X. Xiang,Phys. Rev. B 44, 4677 (1991).Google Scholar
  16. 16.
    M. J. Jou, Y.T. Cheng, H. R. Jen and G.B. Stringfellow,Appl. Phys. Lett. 52, 549 (1988).CrossRefGoogle Scholar
  17. 17.
    J.E. Greene,J. Vac. Sci. Technol. B 1, 229 (1983).CrossRefGoogle Scholar
  18. 18.
    D.M. Wood and A. Zunger,Phys. Rev. B 40, 4062 (1989); 38, 12,756 (1988);Phys. Rev. Lett. 61, 1501 (1988).CrossRefGoogle Scholar
  19. 19.
    A. Zunger and D. M. Wood,J. Cryst. Growth 98, 1 (1989).CrossRefGoogle Scholar
  20. 20.
    A. Mbaye, D.M. Wood and A. Zunger,Phys. Rev. B 37, 3008 (1988);Appl. Phys. Lett. 49, 782 (1986).CrossRefGoogle Scholar
  21. 21.
    K. Kim and E.A. Stern,Phys. Rev. B 32, 1019 (1988); L.C. Davis and H. Holloway,Phys. Rev. B 38, 4294 (1988).CrossRefGoogle Scholar
  22. 22.
    C. Weisbuch and B. Vinter,Quantum Semiconductor Structures (New York: Academic Press, 1991).Google Scholar
  23. 23.
    G.H. Doehler,Quantum Electr., QE 22, 1683 (1986).Google Scholar
  24. 24.(a)
    L. Esaki and R. Tsu, IBM,J. Res. Develop. 14, 62 (1970);Google Scholar
  25. 24.(b)
    J.N. Schulman and T.C. McGill,Appl. Phys. Lett. 34, 663 (1979).CrossRefGoogle Scholar
  26. 25.
    D.L. Smith, T.C. McGill and J.N. Schulman,Appl. Phys. Lett. 43, 180(1983).CrossRefGoogle Scholar
  27. 26.
    J. Reno and J.P. Faurie,Appl. Phys. Lett. 49, 409 (1986).CrossRefGoogle Scholar
  28. 27.
    S.H. Wei and A. Zunger,Appl. Phys. Lett. 53, 2077 (1988).CrossRefGoogle Scholar
  29. 28.
    R. Cingolani, L. Tapper and K. Ploog,Appl. Phys. Lett. 56, 1233 (1990).CrossRefGoogle Scholar
  30. 29.
    M.A. Gell, D. Ninno, M. Jaros and D.C. Herbert,Phys. Rev. B 34, 2416 (1986).CrossRefGoogle Scholar
  31. 30.
    D.B. Laks and A. Zunger,Phys. Rev. B 45, 11,411 (1992).Google Scholar
  32. 31.
    G.C. Osboum,J. Vac. Sci Technol. B 2, 176 (1984).CrossRefGoogle Scholar
  33. 32.
    S.R. Kurtz, G.C. Osburn, R.M. Biefield, L.R. Dawson and H. J. Stein.,Appl. Phys. Lett. 52, 831 (1988).CrossRefGoogle Scholar
  34. 33.
    R.G. Dandrea and A. Zunger,Appl. Phys Lett. 57, 1031 (1990).CrossRefGoogle Scholar
  35. 34.
    T. Takarohashi and M. Ozeki,Jpn. J. Appl. Phys. 30, L956 (1991);J. Cryst. Growth 115, 538 (1991).CrossRefGoogle Scholar
  36. 35.
    S. Froyen, D.M. Wood, and A. Zunger,Phys. Rev. B 36, 4547 (1987); 37, 6893 (1988);Phys. Rev. Lett. 62, 975 (1989);Appl. Phys. Lett. 54, 2435 (1989);Thin Solid Films, 183, 33 (1989).CrossRefGoogle Scholar
  37. 36.
    See review by T.P. Pearsail,Semiconductors and Semimetals,Google Scholar
  38. 32.
    (New York: Academic Press, 1990), p. 1.Google Scholar
  39. 37.
    J.M. Gaines, P.M. Petroff, H. Kroemer, R.J. Simes, R.S. Gells and J.H. EnglishJ.Vac Sci. Technol. B6, 1378 (1988).Google Scholar
  40. 38.
    P.M. Petroff, A.C. Gossard and W. Wiegman,Appl. Phys. Lett. 45, 620 (1984).CrossRefGoogle Scholar
  41. 39.
    T. Fukui and H. Saito,J. Vac Sci. Technol. B6, 1373 (1988).Google Scholar
  42. 40.
    K.C. Hsieh, J.N. Baillaryeon and K.Y. Cheng,Appl. Phys. Lett. 57, 2244 (1990); ibid 60, 2892 (1992); K.C. Hsieh, J.N. Baillaryeon, K.Y. Cheng, S. Bailey, C.H. Uri and M. Mochel, Mat. Res. Soc, xx, 263 (1990). See also P.M. Petroff, M. Tsuchiya and L.A. Coldren,Surf. Sci. 228, 24 (1990).CrossRefGoogle Scholar
  43. 41.
    S.A. Chalmers, A.C. Gossard, P.M. Petroff, J.M. Gaines and H. Kroemer,J. Vac. Sci. Technol. B7, 1357 (1989).Google Scholar
  44. 42.
    S. Chalmers, A.C. Gossard and H. Kroemer,J.Cryst. Growth 111, 647 (1990).CrossRefGoogle Scholar
  45. 43.
    M.S. Miller, H. Weman, C.E. Pryor, M. Krishnamurty, P.M. Petroff, H. Kroemer and J.L. Merz,Phys. Rev. Lett. 68, 3464 (1992).CrossRefGoogle Scholar
  46. 44.
    K.Y. Cheng, K.C. Hsieh, J.N. Baillaryeon and A. Mascarenhas,Inst. Phys. Conf. Ser. 120, 589 (1991).Google Scholar
  47. 45.
    Materials Issues in Micrystalline Semiconductors, eds. P.M. Fauchet, K. Tanaka and C.C. Tsai (Pittsburgh, PA: Materials Research Society, 1990).Google Scholar
  48. 46.(a)
    W.M. Meier and D.H. Olson,Atlas of Zeolite Structure Types, 3rd Ed. (Guildford, Eng.: Butterworth, 1992). G.D. Stucky, E. Ramli, D. Margolese, P. Petroff, S. Tomiya, J. Nicol, C. Glinka, J. Rush,Nanophase and Nanocomposite Materials (Pittsburgh, PA: Materials Research Society, to be published in 1993); R.K. Iler,The Chemistry of Silica (New York: J. Wiley and Sons, 1979); D. Vaughn and R.J. Lussier,Proc. 5th Intern. Conf on Zeolites (L. V. C. Rees ed. Hyden), 94 (1980); W.M. Meier,New Developments in Zeolite Science and Technology, Stud. Surf. Sci. Catal., 13, eds. Y. Murakami, A. Ijima, and J. W. Ward (New York: Elsevier Science) 28 (1986).Google Scholar
  49. 46.(b)
    S. Tomiya, P.M. Petroff, D. Margolese, V. Srdanovand and G. Stucky,Nanophase and Nanocomposite Materials (Pittsburgh, PA: Materials Research Society, to be published in 1993).Google Scholar
  50. 47.
    F. Gutmann and L.E. Lyons,Organic Semiconductors (New York: Wiley, 1967).Google Scholar
  51. 48.
    D.L. Morel et al.,Conf. Rec. 10th IEEE Photovoltaic Specialists Conf. (New York: IEEE, 1974), p. 107.Google Scholar
  52. 49.
    F.F. So and S.R. Forrest,Phys. Rev. Lett. 66, 2649 (1991).CrossRefGoogle Scholar
  53. 50.
    A. Zunger,Appl. Phys. Lett. 50 (1987), p. 164.CrossRefGoogle Scholar
  54. 51.
    J. Bernard, S.H. Wei, D.M. Wood and A. Zunger,Appl. Phys. Lett. 52, 311 (1987); S.-H. Wei and A. Zunger,Appl. Phys. Lett. 56, 662 (1990).CrossRefGoogle Scholar
  55. 52.
    R. Osorio, E. Bernard, S. Froyen and A. Zunger,Phys. Rev. B 45, 11, 173 (1992).CrossRefGoogle Scholar
  56. 53.
    T. Suzuki et al.,Jpn. J. Appl. Phys. 27, 2098 (1988); T. Nishino et al.,Appl. Phys. Lett. 53, 583 (1988).CrossRefGoogle Scholar
  57. 54.
    S.-H. Wei and A. Zunger,Appl. Phys. Lett. 58, 2684 (1991) and unpublished results.Google Scholar
  58. 55.
    S.R. Kurtz, L.R. Dawson, R.M. Biefeld, D.M. Follstaedt and B.L. Doyle,Phys. Rev. B 46, 1909 (1992).CrossRefGoogle Scholar
  59. 56.
    D.M. Wood and A. Zunger,Phys. Rev B 34, 4105 (1986).CrossRefGoogle Scholar
  60. 57.
    A.E. Carlson, D.M. Wood and A. Zunger,Phys. Rev. B 32, 1386 (1985); S.H. Wei and A. Zunger,Phys. Rev. Lett. 56, 528 (1986); D.M. Wood, A. Zunger and R. de Groot,Phys. Rev. B 31, 2570 (1985); N.E. Christensen,Phys. Rev. B 32, 6490 (1985).CrossRefGoogle Scholar
  61. 58.
    K. Kuriyama and F. Nakamura,Phys Rev. B 36, 4439 (1987);Appl. Phys. Lett. 69, 7812 (1991); R. Bacewicz and T.F. Ciszek,Appl. Phys. Lett. 52, 1150 (1988); A. Nelson, M. Engelhardt and M. Hochst,J. Elect. Spect. 51, 623 (1990).CrossRefGoogle Scholar
  62. 59.
    J.L. Shay and J.H. Wernicke,Ternary Chalcopyrites (Oxford, U.K.: Pergamon Press, 1975).Google Scholar
  63. 60.
    J.L. Martins and A. Zunger,Phys. Rev. B 32, 2689 (1985).CrossRefGoogle Scholar
  64. 61.
    J. Jaffe and A. Zunger,Phys. Rev. B 27, 5176 (1983); 28, 5822 (1983); 30, 741 (1984).CrossRefGoogle Scholar
  65. 62.
    J.E. Jaffe and A. Zunger,Phys. Rev. B 29, 1882 (1984).CrossRefGoogle Scholar
  66. 63.
    E. Parthé,Crystal Chemistry of Tetrahedral Structures (New York: Gordon & Breach, 1964).Google Scholar
  67. 64.
    J.E. Bernard and A. Zunger,Phys. Rev. B 37, 6835 (1988).CrossRefGoogle Scholar
  68. 65.
    E. Bucher,Photoelectrochemistry and Photovoltaics of Layered Semiconductors, ed. A. Aruchamy (Amsterdam, the Netherlands: Kluwer, 1991).Google Scholar
  69. 66.
    F. Gutmann,Modern Bioelectrochemistry, eds. F. Guttmann and H. Keyzer (New York: Plenum, 1986), pp. 177–197.Google Scholar
  70. 67.
    R. Pethig, ibid, pp. 199–231.Google Scholar
  71. 68.
    R.R. Birge et al.,Nonlinear Electrodynamics in Biological Systems, eds. W.R. Adey and A.F. Lawrence (New York: Plenum, New York, 1984), pp. 107–120.Google Scholar

References For Table I

  1. a.
    A. Ooe and S. Iida,Jpn. J. Appl. Phys. 29, 1484 (1990).CrossRefGoogle Scholar
  2. b.
    V.G. Lambrecht,Mat. Res. Bull. 8, 1383 (1973).CrossRefGoogle Scholar
  3. c.
    L. Garbato, F. Ledda and P. Manca,Jpn. J. Appl. Phys., Suppl., 19–3, 67 (1980).Google Scholar
  4. d.
    A. Aresti et al.,J. Electrochem. Soc 124, 766 (1977).CrossRefGoogle Scholar
  5. e.
    J.N. Gan et al.,Phys. Rev. B, 12, 5797 (1975); ibid, 13, 3610 (1976).CrossRefGoogle Scholar
  6. f.
    D. Chippaux and A. Deschanvres,J. Solid State Chem. 45, 200 (1982).CrossRefGoogle Scholar
  7. g.
    W. Gebicki, M. Igalson and R. Trykozko,Acta Phys. Pol. A 77, 367 (1990).Google Scholar
  8. h.
    L. Garbato and F. Ledda,J. Solid State Chem. 30, 189 (1979).CrossRefGoogle Scholar
  9. i.
    C. Neal et al.,J. Phys. D 22, 1347 (1989).CrossRefGoogle Scholar
  10. j.
    R. Tovar et al.,J. Cryst. Growth 106, 629 (1990).CrossRefGoogle Scholar
  11. k.
    M. Quintero et al.,J. Solid State Chem. 63, 110 (1986).CrossRefGoogle Scholar
  12. l.
    M. Quintero et al.,J. Solid State Chem. 87, 456 (1990).CrossRefGoogle Scholar
  13. m.
    R. Tovar et al.,Phys. Status Solidi A 111, 405 (1989).CrossRefGoogle Scholar
  14. n.
    M. Quintero and J. C. Wooley,Phys. Status Solidi A 92, 449 (1985).CrossRefGoogle Scholar
  15. o.
    F. Grima et al.,Phys. Status Solidi A 107, 165 (1988).CrossRefGoogle Scholar

References For Table II

  1. a.
    M.A.E. Maslout and C. Gleitzer,Compt. Rendus. 271 Ser C, 1177 (1970).Google Scholar
  2. b.
    R. Juza and F. Hund,Naterwiss 33, 121 (1946); Z. Anorg,Allg. Chem. 257, 1 (1948).CrossRefGoogle Scholar
  3. c.
    H. Nowotny and K. Bachmayer,Monatshafte. Chem. 81, 488 (1950); ibid 80, 735 (1949).CrossRefGoogle Scholar
  4. d.
    F. Laves,Taschbenbuch für Chemiker und Physiker, eds. J. D’Ans and E. Lax (Berlin, Germany: Springer-Verlag, 1943).Google Scholar
  5. e.
    R. Juza, W. Dethlefsen, H. Seidel and K. Benda,Z. Anorg. Allg. Chem., 356, 253 (1968); R. Juza, K. Langes and K Benda,Anorg, Chem. Intnt. Edition, 7, 360 (1968).CrossRefGoogle Scholar
  6. f.
    M.A. El Maslout, J.P. Motte, C. Gleitzer and J. Aubry,Compt. Rendus. 273, Ser. C, 707 (1971).Google Scholar
  7. g.
    H. Nowotny et al.,Monatshafte. Chem. 82, 720 (1951).CrossRefGoogle Scholar
  8. h.
    W.B. Pearson,Handbook of Lattice Spacings and Structure of Metals and Alloys (New York: Pergamon Press, 1958), Vol. 1, p. 400 describes NaHgAs as FCC, cubic, C1 Type Structure. See also H. Nowotny,Holub, Monatshafte Chem. 91, 877 (1960).Google Scholar
  9. i.
    H. Nowotny and W. Sibert,Z. Metallkd. 33, 391 (1941).Google Scholar
  10. j.
    H. Nowotny,Metallforsch 1, 138 (1946).Google Scholar
  11. k.
    H. Nowotny,Z. Metallkd. 7, 273 (1942).Google Scholar

Copyright information

© The Mineral,Metal & Materials Society,Inc. 1993

Authors and Affiliations

  • Alex Zunger
    • 1
  • S. Wagner
    • 2
  • P. M. Petroff
    • 3
  1. 1.National Renewable Energy LaboratoryGolden
  2. 2.Department of Electrical EngineeringPrinceton UniversityPrinceton
  3. 3.Materials DepartmentUniversity of CaliforniaSanta Barbara

Personalised recommendations