Advertisement

Journal of Electronic Materials

, Volume 21, Issue 8, pp 825–829 | Cite as

The role of complementary species in P/Be and Ar/Be Co-implanted InP

  • Chang Oh Jeong
  • Sung June Kim
  • Byung Doo Choe
Article

Abstract

Chemical and damage effects are used to explain the influence of complementary species on the activation of co-implanted InP. Recently Raoet al. have shown that the damage is the effective mechanism of enhancing activation efficiency and preventing in-diffusion in the P/Be and Ar/Be co-implanted InP. We have confirmed the results and further examined the role of the complementary species by varying their doses. Activation efficiencies as high as 75% and 69.5% were observed in the P/Be and Ar/Be co-implantation, respectively, which can be compared with 31.7% activation in the Be single implantation. Both activation efficiency and in-diffusion decreased as doses of P and Ar increased, that is, as the amount of damage increased. P/Be had always higher activation efficiency than that of Ar/Be when the doses of co-implants are equal. The ratio of the difference in the two activation efficiencies to that of P/Be was the largest at 1014 cm−2 of co-implant dose. This behavior was attributed to the chemical effect of the co-implanted P. Photoluminescence results near the band edge showed that the intensity of the main peaks of Be single implantation decreased with increasing P and Ar doses.

Key words

InP co-implantation chemical effect stoichiometry damage effect Hall measurement photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York (1981).Google Scholar
  2. 2.
    V. Swaminathan and A. T. Macrander, Material Aspects of GaAs and InP Based Materials, Prentice Hall, New Jersey (1991).Google Scholar
  3. 3.
    S. J. Kim, G. Guth, G. P. Vella-Coleiro, C. W. Seabury, W. A. Sponsler and B. J. Rhoades, IEEE Electron Dev. Lett.9, 447 (1988).CrossRefGoogle Scholar
  4. 4.
    J. B. Boos, W. Kruppa and B. Molnar, IEEE Electron Dev. Lett.10, 79 (1989).CrossRefGoogle Scholar
  5. 5.
    B. L. Sharma, Solid State Tech. Nov., 113 (1989).Google Scholar
  6. 6.
    R. Heckingbottom and T. Ambridge, Rad. Eff.17, 31 (1973).CrossRefGoogle Scholar
  7. 7.
    L. A. Christel and J. F. Gibbons, J. Appl. Phys.52, 5050 (1981).CrossRefGoogle Scholar
  8. 8.
    R. Chaplain, M. Gauneau, H. L’Haridon and A. Rupert, J. Appl. Phys.58, 1803 (1985).CrossRefGoogle Scholar
  9. 9.
    K. W. Wang, C. L. Cheng, J. Long and D. Mitcham, IEEE Electron Dev. Lett.9, 205 (1988).CrossRefGoogle Scholar
  10. 10.
    M. V. Rao and R. K. Nadella, J. Appl. Phys.67, 1761 (1990).CrossRefGoogle Scholar
  11. 11.
    J. F. Ziegler, J. P. Biersack and U. Littmark, The Stopping and Ranges of Ions in Matter, vol. 1, Pergamon, New York (1985).Google Scholar
  12. 12.
    M. V. Rao, M. P. Keating and P. E. Thompson, J. Electron. Mater.17, 315 (1988).CrossRefGoogle Scholar
  13. 13.
    A. Piotrowska, A. Guivarc’h and G. Pelous, Solid State Elec- tron.26, 179 (1983).CrossRefGoogle Scholar
  14. 14.
    N. Moris and B. J. Sealy, Inst. Phys. Conf. Ser. No. 91, Ch. 2, 145 (1987).Google Scholar
  15. 15.
    G. Srinivasan and B. J. Sealy, Appl. Phys. Lett.57, 378 (1990).CrossRefGoogle Scholar
  16. 16.
    E. F. Kennedy, Appl. Phys. Lett.38, 375 (1981).CrossRefGoogle Scholar
  17. 17.
    R. G. Wilson, S. W. Novak and J. M. Zavada, Inst. Phys. Conf. Ser. no. 91, 479 (1988).Google Scholar
  18. 18.
    Y. K. Yeo, Y. S. Park and P. W. Yu, J. Appl. Phys.50, 3274 (1979).CrossRefGoogle Scholar
  19. 19.
    P. Karighattam and D. A. Thompson, InP and Related Ma- terials for Adv. Electron, and Optical Dev., SPIE Vol. 1144, 329 (1989).Google Scholar
  20. 20.
    H. Tempkin and V. V. Dutt, Mat. Res. Soc. Symp. Proc.14, 253 (1983).Google Scholar

Copyright information

© TMS 1992

Authors and Affiliations

  • Chang Oh Jeong
    • 1
  • Sung June Kim
    • 1
  • Byung Doo Choe
    • 1
  1. 1.Inter-University Semiconductor Research CenterSeoul National UniversitySeoulKorea

Personalised recommendations