Metallurgical and Materials Transactions A

, Volume 25, Issue 7, pp 1347–1357 | Cite as

Phase relations and gibbs energies in the system Mn-Rh-O

  • K. T. Jacob
  • M. V. Sriram
Alloy Phases


Phase relations in the system Mn-Rh-O are established at 1273 K by equilibrating different compositions either in evacuated quartz ampules or in pure oxygen at a pressure of 1.01 × 105 Pa. The quenched samples are examined by optical microscopy, X-ray diffraction, and energy-dispersive X-ray analysis (EDAX). The alloys and intermetallics in the binary Mn-Rh system are found to be in equilibrium with MnO. There is only one ternary compound, MnRh2O4, with normal spinel structure in the system. The compound Mn3O4 has a tetragonal structure at 1273 K. A solid solution is formed between MnRh2O4 and Mn3O4. The solid solution has the cubic structure over a large range of composition and coexists with metallic rhodium. The partial pressure of oxygen corresponding to this two-phase equilibrium is measured as a function of the composition of the spinel solid solution and temperature. A new solid-state cell, with three separate electrode compartments, is designed to measure accurately the chemical potential of oxygen in the two-phase mixture, Rh + Mn3−2xRh2xO4, which has 1 degree of freedom at constant temperature. From the electromotive force (emf), thermodynamic mixing properties of the Mn3O4-MnRh2O4 solid solution and Gibbs energy of formation of MnRh2O4 are deduced. The activities exhibit negative deviations from Raoult’s law for most of the composition range, except near Mn3O4, where a two-phase region exists. In the cubic phase, the entropy of mixing of the two Rh3+ and Mn3+ ions on the octahedral site of the spinel is ideal, and the enthalpy of mixing is positive and symmetric with respect to composition. For the formation of the spinel (sp) from component oxides with rock salt (rs) and orthorhombic (orth) structures according to the reaction, MnO (rs) + Rh2O3 (orth) → MnRh2O4 (sp),ΔG° = -49,680 + 1.56T (±500)J mol−1 The oxygen potentials corresponding to MnO + Mn3O4 and Rh + Rh2O3 equilibria are also obtained from potentiometric measurements on galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte. From these results, an oxygen potential diagram for the ternary system is developed.


Material Transaction Measuring Electrode Buffer Electrode Spinel Solid Solution Zirconia Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.G. Schmahl, D. Hennings, and W. Schneider:Z. Phys. Chem. (Wiesbaden), 1969, vol. 63, pp. 125–31.Google Scholar
  2. 2.
    K.T. Jacob and T. Mathews:J. Mater. Chem., 1991, vol. 1, pp. 545–49.CrossRefGoogle Scholar
  3. 3.
    Binary Alloy Phase Diagrams, T.B. Massalski, ed., ASM, Metals Park, OH, 1990, vol. 3, pp. 2593–95.Google Scholar
  4. 4.
    K.T. Jacob and J.H.E. Jeffes:High Temp.-High Pressures, 1972, vol. 4, pp. 177–82.Google Scholar
  5. 5.
    J.N. Pratt:Metall. Trans. A, 1990, vol. 21A, pp. 1223–50.Google Scholar
  6. 6.
    J. Fouletier, P. Fabry, and M. Kleitz:J. Electrochem. Soc., 1976, vol. 123, pp. 204–13.CrossRefGoogle Scholar
  7. 7.
    G.M. Kale and K.T. Jacob:Metall. Trans. B, 1992, vol. 23B, pp. 57–64.Google Scholar
  8. 8.
    G.G. Charette and S.N. Flengas:J. Electrochem. Soc., 1964, vol. 115, pp. 796–804.CrossRefGoogle Scholar
  9. 9.
    R.N. Blumenthal and D.H. Whitmore:J. Am. Ceram. Soc., 1961, vol. 44, pp. 508–12.CrossRefGoogle Scholar
  10. 10.
    K. Schwerdtfeger and A. Muan:Trans. AIME, 1967, vol. 239, pp. 1114–19.Google Scholar
  11. 11.
    J.S. Huebner and M. Sato:Am. Mineral., 1970, vol. 55, pp. 934–52.Google Scholar
  12. 12.
    I.M. Chou:Am. Mineral., 1978, vol. 63, pp. 690–703.Google Scholar
  13. 13.
    H. Kleykamp:Z. Phys. Chem. (N.F.), 1969, vol. 67, pp. 277–83.Google Scholar
  14. 14.
    N.G. Schmahl and E. Minzl:Z. Phys. Chem. (N.F.), 1964, vol. 41, pp. 78–96.Google Scholar
  15. 15.
    K.T. Jacob and J.H.E. Jeffes:Trans. Inst. Min. Metall., Section C, 1971, vol. 80, pp. C181-C189.Google Scholar
  16. 16.
    K.T. Jacob and T. Mathews:Ind. J. Tech., 1990, vol. 28, pp. 413–27.Google Scholar
  17. 17.
    R. Akila, A.K. Shukla, and K.T. Jacob:Bull. Mater. Sci., 1986, vol. 8, pp. 453–65.Google Scholar
  18. 18.
    M. Lundberg and E. Rosén:J. Am. Ceram. Soc., 1992, vol. 75, pp. 1452–57.CrossRefGoogle Scholar
  19. 19.
    C. Mallika, R. Pankajavalli, and O.M. Sreedharan:Electrochim. Acta, 1986, vol. 31, pp. 885–86.CrossRefGoogle Scholar
  20. 20.
    R. Metselaar, R.E.J. Van Tol, and P. Piercy:J. Solid State Chem., 1981, vol. 38, pp. 335–41.CrossRefGoogle Scholar
  21. 21.
    J.D. Dunitz and L.E. Orgel:J. Phys. Chem. Solids, 1957, vol. 3, pp. 318–23.CrossRefGoogle Scholar
  22. 22.
    K.T. Jacob and C.B. Alcock:Metall. Trans. B, 1975, vol. 6B, pp. 215–21.CrossRefGoogle Scholar
  23. 23.
    G. Blasse:Philips Res. Rep., 1964, Suppl. 3.Google Scholar
  24. 24.
    R.D. Shannon and C.T. Prewitt:Acta Crystallogr., 1969, vol. B25, pp. 925–46.Google Scholar
  25. 25.
    R.D. Shannon and C.T. Prewitt:Acta Crystallogr., 1970, vol. B26, pp. 1046–48.Google Scholar
  26. 26.
    L.B. Pankratz:Thermodynamic Properties of Elements and Oxides; U.S. Bureau of Mines Bull. 672, U.S. Government Printing Office, Washington, DC, 1982, pp. 229–36.Google Scholar
  27. 27.
    I. Bransky and N.M. Tallan:J. Electrochem. Soc., 1971, vol. 118, pp. 788–93.CrossRefGoogle Scholar
  28. 28.
    C. Picard and P. Gerdanian:J. Solid State Chem., 1974, vol. 11, pp. 190–202.CrossRefGoogle Scholar
  29. 29.
    M. Keller and R. Dieckmann:Trans. Jpn. Inst. Met., 1983, vol. 24, pp. 650–51.Google Scholar
  30. 30.
    R.A. Robie and B.S. Hemingway:J. Chem. Thermodyn., 1985, vol. 17, pp. 165–81.CrossRefGoogle Scholar
  31. 31.
    C.H. Shomate:J. Am. Chem. Soc., 1947, vol. 69, pp. 218–19.CrossRefGoogle Scholar
  32. 32.
    J.C. Southard and C.H. Shomate:J. Am. Chem. Soc., 1942, vol. 64, p. 1770.CrossRefGoogle Scholar
  33. 33.
    D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall: National Bureau of Standards Tables of Chemical Thermodynamic Properties,J. Phys. Chem. Ref. Data, 1982, vol. 11, Suppl. 2, pp. 1–394.Google Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1994

Authors and Affiliations

  • K. T. Jacob
    • 1
  • M. V. Sriram
    • 2
  1. 1.Indian Institute of ScienceBangaloreIndia
  2. 2.Department of Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations