Metallurgical and Materials Transactions A

, Volume 25, Issue 4, pp 839–850 | Cite as

Coefficients of thermal expansion of metal-matrix composites for electronic packaging

  • Y. -L. Shen
  • A. Needleman
  • S. Suresh
Mechanical Behaviour


Finite element analyses of the effective coefficient of thermal expansion (CTE) of metal-matrix composites are presented, with a focus on composites with potential for use in electronic packaging applications. The analyses are based on two-dimensional plane strain and axisymmetric unit-cell models. The brittle phase is characterized as an isotropic elastic solid with isotropic thermal expansion. The possibility of plastic deformation, described by an isotropic-hardening flow rule, is allowed for in the ductile phase. A wide range of reinforcement volume fractions is considered. The effects of phase geometry, phase contiguity, ductile phase material properties, processing-induced residual stresses, and brittle particle fracture are considered. The CTE is found to be much less sensitive to phase distribution effects than is the tensile stiffness. The results show that there is a significant dependence of the overall CTE on the phase contiguity (i.e., on whether the brittle or the ductile phase is continuous).


Residual Stress Material Transaction Plane Strain Thermal Residual Stress Brittle Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Zweben:J. Met., 1992, vol. 44 (7), pp. 15–23.Google Scholar
  2. 2.
    A. Levy and J.M. Papazian:J. Eng. Mater. Technol., 1993, vol. 115, pp. 129–33.Google Scholar
  3. 3.
    B.W. Rosen and Z. Hashin:Int. J. Eng. Sci., 1970, vol. 8, pp. 157–73.CrossRefGoogle Scholar
  4. 4.
    V.M. Levin:Mekhanika Tverdogo Tela, 1967, vol. 2, pp. 88–94; Mech. Solids, 1967, vol. vn2, pp. 58-61 English translation.Google Scholar
  5. 5.
    R.A. Schapery:J. Comp. Mater., 1968, vol. 2, pp. 380–404.CrossRefGoogle Scholar
  6. 6.
    M. Finot: Master’s Thesis, Brown University, Providence, RI, 1993.Google Scholar
  7. 7.
    K. Janghorban:J. Mater. Process. Technol., 1993, vol. 38, pp. 361–68.CrossRefGoogle Scholar
  8. 8.
    T. Christman, A. Needleman, and S. Suresh:Acta Metall., 1989, vol. 37, pp. 3029–50.CrossRefGoogle Scholar
  9. 9.
    J. Llorca, A. Needleman, and S. Suresh:Acta Metall. Mater., 1991, vol. 39, pp. 2317–35.CrossRefGoogle Scholar
  10. 10.
    J. Llorca, S. Suresh, and A. Needleman:Metall. Trans. A, 1992, vol. 23A, pp. 919–34.Google Scholar
  11. 11.
    V. Tvergaard:Int. J. Fract., 1982, vol. 18, pp. 237–52.Google Scholar
  12. 12.
    M.B. Bush:Mater. Sci. Eng., 1992, vol. A154, pp. 139–48.Google Scholar
  13. 13.
    V. Tvergaard:Acta Metall. Mater., 1990, vol. 38, pp. 185–94.CrossRefGoogle Scholar
  14. 14.
    A. Levy and J.M. Papazian:Metall. Trans. A, 1990, vol. 21A, pp. 411–20.Google Scholar
  15. 15.
    N. S0rensen, A. Needleman, and V. Tvergaard:Mater. Sci. Eng., 1992, vol. A158, pp. 129–37.Google Scholar
  16. 16.
    C.L. Horn:J. Mech. Phys. Solids, 1992, vol. 40, pp. 991–1008.CrossRefGoogle Scholar
  17. 17.
    G.L. Povirk, M.G. Stout, M. Bourke, J.A. Goldstone, A.C. Lawson, M. Lovato, S.R. MacEwen, S.R. Nutt, and A. Needleman:Acta Metall. Mater., 1992, vol. 40, pp. 2391–412.CrossRefGoogle Scholar
  18. 18.
    M.A.M. Bourke, J.A. Goldstone, M.G. Stout, and A. Needleman: inMetal-Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Stoneham, MA, 1993, pp. 61–80.Google Scholar
  19. 19.
    V. Tvergaard:J. Mech. Phys. Solids, 1976, vol. 24, pp. 291–304.CrossRefGoogle Scholar
  20. 20.
    D. Peirce, C.F. Shih, and A. Needleman:Compos. Struct., 1984, vol. 18, pp. 857–87.Google Scholar
  21. 21.
    S. Suresh, T. Christman, and Y. Sugimura:Scripta Metall., 1989, vol. 23, pp. 1599–1602.CrossRefGoogle Scholar
  22. 22.
    ASM Handbook, 10th ed., ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 2.Google Scholar
  23. 23.
    H.J. Böhm: Doctoral Thesis, Technical University of Vienna, Vienna, Austria, 1991.Google Scholar
  24. 24.
    Y.-L. Shen, M. Finot, A. Needleman, and S. Suresh:Acta Metall. Mater., 1994, vol. 42, pp. 77–97.CrossRefGoogle Scholar
  25. 25.
    J.R. Brockenbrough, S. Suresh, and H.A. Wienecke:Acta Metall. Mater., 1991, vol. 39, pp. 735–52.CrossRefGoogle Scholar
  26. 26.
    T. Nakamura and S. Suresh:Acta Metall. Mater., 1993, vol. 41, pp. 1665–81.CrossRefGoogle Scholar
  27. 27.
    M.K. Premkumar, W.H. Hunt, Jr., and R.R. Sawtell:J. Met., 1992, vol. 44 7, pp. 24–28.Google Scholar
  28. 28.
    M.H. Poech and H.F. Fischmeister:Acta Metall. Mater., 1992, vol. 40, pp. 487–94.CrossRefGoogle Scholar
  29. 29.
    M.H. Poech, H.F. Fischmeister, and R. Spiegler:J. Hard Mater., 1991, vol. 2, pp. 197–205.Google Scholar
  30. 30.
    G.L. Povirk, A. Needleman, and S.R. Nutt:Mater. Sci. Eng., 1991, vol. A132, pp. 31–38.Google Scholar
  31. 31.
    J. Bonnen, J. Allison, and J.W. Jones:Metall. Trans. A, 1991, vol. 22A, pp. 1007–19.Google Scholar
  32. 32.
    T. Mochida, M. Taya, and D.J. Lloyd:Mater. Trans., JIM, 1991, vol. 32, pp. 931–42.Google Scholar
  33. 33.
    Y. Sugimura and S. Suresh:Metall. Trans. A, 1992, vol. 23A, pp. 2231–42.Google Scholar
  34. 34.
    Y. Brechet, J.D. Embury, S. Tao, and L. Luo:Acta Metall. Mater., 1991, vol. 39, pp. 1781–86.CrossRefGoogle Scholar
  35. 35.
    P.M. Mummery, B. Derby, and C.B. Scruby:Acta Metall. Mater., 1993, vol. 41, pp. 1431–45.CrossRefGoogle Scholar
  36. 36.
    D.J. Lloyd:Acta Metall. Mater., 1991, vol. 39, pp. 59–71.CrossRefGoogle Scholar
  37. 37.
    W.H. Hunt, Jr., J.R. Brockenbrough, and P.E. Magnusen:Scripta Metall. Mater., 1991, vol. 25, pp. 15–20.CrossRefGoogle Scholar
  38. 38.
    J. Yang, C. Cady, M.S. Hu, F. Zok, R. Mehrabian, and A.G. Evans:Acta Metall. Mater., 1990, vol. 38, pp. 2613–19.CrossRefGoogle Scholar
  39. 39.
    M.S. Hu:Scripta Metall. Mater., 1991, vol. 25, pp. 695–700.CrossRefGoogle Scholar
  40. 40.
    S. Kumai, J.E. King, and J.F. Knott:Fatigue Fract. Eng. Mater. Struct., 1992, vol. 15, pp. 1–11.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1994

Authors and Affiliations

  • Y. -L. Shen
    • 1
  • A. Needleman
    • 1
  • S. Suresh
    • 2
  1. 1.Division of EngineeringBrown UniversityProvidence
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridge

Personalised recommendations