Advertisement

Journal of Electronic Materials

, Volume 22, Issue 2, pp 165–170 | Cite as

Evidence of interaction between two DX centers in N-Type AlGaAs from RDLTS and temperature dependent pulse-width DLTS measurements

  • C. W. Wang
  • C. H. Wu
  • J. L. Boone
  • C. L. Balestra
Regular Issue Paper

Abstract

Two well-separated electron traps with activation energies: Et 1 ≊ 0.286 eV and Et 2 ≊ 0.433 eV have been consistently detected in the n-type Al0.6Ga0.4As confinement layer of AlGaAs/GaAs single quantum well laser diodes. The physical characteristic parameters for these two traps, including capture cross section, emission time constant, and capture time constant, have been calculated. Reverse-bias pulsed deep level transient spectroscopy (RDLTS) results provide the evidence for the first time that these two traps have strong interaction during emission processes. This allows us to conclude that Et 1 and Et 2 are indeed both donor-unknown centers. Furthermore, using a temperature-dependent pulse-width method, DLTS signals from Et 1 alone can be obtained. The corrected activation energy appears to be a little shallower at Et 1 ≊ 0.265 eV.

Key words

Deep level transient spectroscopy (DLTS) donor-unknown (DX) centers interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.V. Lang,J. Appl. Phys. 45, 3014 (1974).CrossRefGoogle Scholar
  2. 2.
    E. Calleja and E. Munoz,Solid State Phenomena Vol. 10, 73 (1989).Google Scholar
  3. 3.
    W.T. Tsang,Appl. Phys. Lett. 39, 134(1981).CrossRefGoogle Scholar
  4. 4.
    S. D. Hersee, B. deCremoux and J.P. Duchemin,App. Phys. Lett. 44, 476 (1984).CrossRefGoogle Scholar
  5. 5.
    D.V. Lang, R.A. Logan and M. Jaros,Phys. Rev. B19, 1015 (1979).Google Scholar
  6. 6.
    T.N. Theis, P.M. Mooney and S.L. Wright,Phys. Rev. Lett. 60, 361 (1988).CrossRefGoogle Scholar
  7. 7.
    T. Hashizume, H. Hasegawa and H. Ohno,J. Appl. Phys. 68, 3394 (1990).CrossRefGoogle Scholar
  8. 8.
    M. Sakamoto, T. Okada and Y. Mori,J. Appl. Phys. 58, 337 (1985).CrossRefGoogle Scholar
  9. 9.
    R.H. Wallis,Inst. Phys. Conf. Ser., No. 56, 73 (1981).Google Scholar
  10. 10.
    P.K. Bhattacharya, T. Matsumoto and S. Subramanian,J. Cryst. Growth 68, 301 (1984).CrossRefGoogle Scholar
  11. 11.
    E.E. Wagner, D.E. Mars, G. Ham and G.B. Stringfellow,J. Appl. Phys. 51, 5434 (1980).CrossRefGoogle Scholar
  12. 12.
    H.C. Casey Jr., A.Y. Cho, D.V. Lang, E.H. Nicollian and P.W. Foy,J. Appl. Phys. 50, 3484 (1979).CrossRefGoogle Scholar
  13. 13.
    P.M. Mooney,Proc Mater. Res. Soc. Symp. Vol. 104, eds. M. Stavola, S.J. Pearton and G. Davis (MRS, Pittsburgh, 1988).Google Scholar
  14. 14.
    T.N. Morgan,Phys. Rev. B34, 2664 (1986).Google Scholar
  15. 15.
    H.P. Hjalmarson and T.J. Drummond,Appl. Phys. Lett. 48, 656 (1986).CrossRefGoogle Scholar
  16. 16.
    A. Oshiyama and S. Onishi,Phys. Rev. B38, 5772 (1988).Google Scholar
  17. 17.
    K. Khachaturyan and E.R. Weber,Defects in Semiconductors, 15, ed. G. Ferenczi (Trans. Tech., Switzerland, p. 1067, 1989).Google Scholar
  18. 18.
    D.J. Chadi and K.J. Chang,Phys. Rev. B39, 10, 366 (1989)Google Scholar
  19. 19.
    J.C.M. Henning and J. P. M. Ansems,Phys. Rev. B38, 5772 (1988).Google Scholar
  20. 20.
    J. Criado, A. Gomez, E. Calleja and E. Munoz,Appl. Phys. Lett. 52, 660 (1988).CrossRefGoogle Scholar
  21. 21.
    M. Tachikawa, M. Mizuta and H. Kukimoto,Jpn. J. Appl. Phys. 23, 1594(1984).CrossRefGoogle Scholar
  22. 22.
    B. Balland, R. Blondeau, D. deCremoux and P. Hirtz,Thin Solid Films 65,275 (1980).CrossRefGoogle Scholar
  23. 23.
    B. Balland, J.L. Pavot, B. deCremoux and P. Hirtz,Phys. Status Solidi A68, 661 (1981).Google Scholar
  24. 24.
    M.F. Li, W. Shan and P.Y. Yu,Appl. Phys. Lett. 53, 1195 (1988).CrossRefGoogle Scholar
  25. 25.
    M. Fudamoto, K. Tahira, S. Tashiro, J. Morimoto and T. Miyakawa,Jpn. J. Appl. Phys. 2;8, 2038 (1989).CrossRefGoogle Scholar
  26. 26.
    A.K. Saxena,Appl. Phys. Lett. 36, 79 (1980).CrossRefGoogle Scholar
  27. 27.
    M. Kaniewska and J. Kainewski,J. Appl; Phys. 63, 1086 (1988).CrossRefGoogle Scholar
  28. 28.
    G.P. Li and K.L. Wang,Solid-State Electron. 26, 825 (1983).CrossRefGoogle Scholar
  29. 29.
    G.P. Li and K.L. Wang,J. Appl. Phys. 57, 1016 (1985).CrossRefGoogle Scholar
  30. 30.
    D.V. Lang,J. Appl. Phys. 45, 3023 (1974).CrossRefGoogle Scholar
  31. 31.
    D.V. Lang,Deep Centers in Semiconductors, ed. S.T. Pantelides (Gordon and Breach, New York), 4;89 (1986).Google Scholar
  32. 32.
    M. Guzzi and J.L. Staehli,Solid State Phenomena, Vol. 10, 25 (1989).CrossRefGoogle Scholar
  33. 33.
    H.P. Hjalmarson, P. Vogl, D.J. Wolford and J.D. Dow,Phys. Rev. Lett. 44, 810 (1980).CrossRefGoogle Scholar
  34. 34.
    S. Y. Ren, J. D. Dow and J. Shen,Phys. Rev. B38, 10,677(1988).Google Scholar
  35. 35.
    D.V. Land and R.A. Logan,Inst. Phys. Conf. Ser. 43, 433 (1979).Google Scholar
  36. 36.
    T.R. Hanak, R.K. Ahrenkiel, D.J. Dunlavy, A.M. Bakry, and M.L. Timmons,J. Appl. Phys. 67, 4126 (1990).CrossRefGoogle Scholar

Copyright information

© The Mineral,Metal & Materials Society,Inc. 1993

Authors and Affiliations

  • C. W. Wang
    • 1
  • C. H. Wu
    • 1
  • J. L. Boone
    • 1
  • C. L. Balestra
    • 2
  1. 1.Department of Electrical EngineeringUniversity of Missouri-RollaRolla
  2. 2.Microelectronics Center, McDonnell Douglas CorporationSt. Louis

Personalised recommendations