Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hot workability of three grades of tool steel

  • 318 Accesses

  • 62 Citations

Abstract

Three tool steels, a cold-work air-hardening grade, a hot-work die grade, and a high-speed type, were deformed by torsion in the range of 900 to 1100 °C at rates of 0.1 to 5 s•1. In a series of continuous deformation tests the flow stress and ductility were determined. The exponent of the flow stress was proportional to the strain rate and to the temperature in a reciprocal Arrhenius relationship. In general the flow stress for a given deformation condition, the activation energy, and the strain for the start of dynamic recrystallization increased for the steels in the order listed above; however, the ductility of the hot-work grade is superior to the other two grades. Multistage tests were carried out on each steel to determine its softening behavior during intervals between passes. Each test was carried out under isothermal conditions with constant strain rate, pass strain, and interval duration. Softening occurred by both recovery and recrystallization with the amount increasing with temperature, strain rate, pass strain, and accumulated strain. The first two steels were similar in behavior having extensive softening at 1000 °C, whereas the high-speed steel experienced considerably less softening.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. J. McQueen, J. Sankar, and S. Fulop:Mechanical Behavior of Materials, Pergamon Press, New York, NY, 1979, vol. 2, pp. 675–84.

  2. 2.

    J. Sankar, D. Hawkins, and H.J. McQueen:Metals Tech., 1979, vol. 4, pp. 325–31.

  3. 3.

    H. J. McQueen:Can. Met. Quart., 1982, vol. 21, pp. 445–60.

  4. 4.

    H. J. McQueen and J. J. Jonas:Treatise on Materials Science and Technology, Plastic Deformation of Materials, R. J. Arsenault, ed., Academic Press, New York, NY, 1975, vol. 6, pp. 393–493.

  5. 5.

    N. D. Ryan, H. J. McQueen, and J. J. Jonas:Can. Met. Quart., 1983, vol. 22, pp. 369–78.

  6. 6.

    W. Knudsen, J. Sankar, H.J. McQueen, J. J. Jonas, and D. Hawkins:Hot Working and Forming Processes, Metals Society, London, 1979, pp. 51–56.

  7. 7.

    A. H. Ucisik, I. Weiss, H. J. McQueen, and J. J. Jonas:Can. Met. Quart., 1981, vol. 19, pp. 351–58.

  8. 8.

    S. Fulop and H.J. McQueen:Superalloys — Processing, Metal Ceramics Information Center, Columbus, OH, 1972, pp. H1-H21.

  9. 9.

    H. J. McQueen, G. Gurewitz, and S. Fulop:High Temp. Tech., 1983, vol. 2, pp. 131–38.

  10. 10.

    G. Hoyle:Met. Rev., 1964, vol. 9, pp. 49–91.

  11. 11.

    F. Kayser and M. Cohen:Metal Progress, 1952, vol. 61, no. 6, pp. 79–85.

  12. 12.

    T. Malkewicz, Z. Böjarski, and J. Forsyt:J. Iron Steel Inst., 1959, vol. 193, pp. 25–31.

  13. 13.

    C.H. White and R.W.K. Honeycombe:J. Iron Steel Inst., 1961, vol. 197, pp. 21–28.

  14. 14.

    S. Fulop, K.C. Cadien, M. J. Luton, and H.J. McQueen:J. Test. Eval., 1977, vol. 5, pp. 419–26.

  15. 15.

    C. Rossard:Metaux, Corrosion, Industries, 1960, vol. 35, pp. 102–15, 140-53, and 190-205.

  16. 16.

    C. M. Sellars and W. J. McG. Tegart:Int. Met. Rev., 1972, vol. 17, pp. 1–24.

  17. 17.

    J. J. Jonas, C. M. Sellars, and W.J. McG. Tegart:Met. Rev., 1969, vol. 14, pp. 1–24.

  18. 18.

    J. E. Carlsson and W. Roberts:Jernkontorets Forskning, Rep. D 401, 1982, National Institute for Metals, Stockholm, 1982.

  19. 19.

    W. Roberts:Deformation, Processing and Structure, A. Krausz, ed., American Society for Metals, Metals Park, OH, 1984, pp. 109–84.

  20. 20.

    S.K. Samanta:Deformation Under Hot Working Conditions, Iron and Steel Inst., London, 1968, pp. 122–30.

  21. 21.

    S.K. Samanta:Int. J. Mech. Sci., 1968, vol. 10, pp. 618–36.

  22. 22.

    H.J. McQueen, R. Petkovic, H. Weiss, and L. G. Hinton:The Hot Deformation of Austenite, J. B. Bailance, ed., AIME, New York, NY, 1977, pp. 113–39.

  23. 23.

    L. Fritzmeier, M.J. Luton, and H.J. McQueen:Strength of Metals and Alloys (ISCMA 5, Aachen), P. Haasen, ed., Pergamon Press, Frankfurt, 1979, vol. 1, pp. 95–100.

  24. 24.

    H. Weiss, A. Gittins, G. G. Brown, and W. J. McG. Tegart:J. Iron Steel Inst., 1973, vol. 211, pp. 703–09.

  25. 25.

    D. McLean:Trans. TMS-AIME, 1968, vol. 242, pp. 1193–203.

  26. 26.

    H. J. McQueen and B. Baudelet:Strength of Metals and Alloys (ICSMA 5, Aachen), P. Haasen, ed., Pergamon Press, Frankfurt, 1979, vol. 1, pp. 329–36.

  27. 27.

    B. Walser and O.D. Sherby:Metall. Trans. A, 1979, vol. 10A, pp. 1461–71.

  28. 28.

    W.J. McG. Tegart:Ductility, American Society for Metals, Metals Park. OH, 1966, pp. 133–77.

  29. 29.

    A. Gittins, L. G. Northway, and A. Freeman:J. Australian Inst. Met., 1971, vol. 16, pp. 225–30.

  30. 30.

    A. Gittins, L. G. Hinton, and W. J. McG. Tegart:Manufacturing Eng. Trans., 1973, vol. 2, pp. 199–207.

  31. 31.

    R.A. Petkovic Djaic and J. J. Jonas:J. Iron Steel Inst., 1972, vol. 210, pp. 256–61.

  32. 32.

    R.A. Petkovic Djaic and J. J. Jonas:Metall. Trans., 1973, vol. 4, pp. 621–24.

  33. 33.

    R. A. Petkovic, M. J. Luton, and J. J. Jonas:Can. Met. Quart., 1975, vol. 14, pp. 137–45.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Imbert, C., Ryan, N.D. & McQueen, H.J. Hot workability of three grades of tool steel. MTA 15, 1855–1864 (1984). https://doi.org/10.1007/BF02664899

Download citation

Keywords

  • Carbide
  • Metallurgical Transaction
  • Flow Stress
  • Flow Curve
  • Dynamic Recrystallization