Advertisement

Metallurgical Transactions B

, Volume 21, Issue 2, pp 341–347 | Cite as

The selective carbochlorination of iron from titanlferous magnetite ore in a fluidized bed

  • K. I. Rhee
  • H. Y. Sohn
Soild State Reactions

Abstract

The selective chlorination of iron from titaniferous magnetite ore using solid carbon as a reducing agent was studied in a fluidized bed. The effects of chlorination temperature, chlorine gas partial pressure, ratio of ore to carbon particle sizes, and the amount of added carbon were determined. Experimental results indicate that temperatures between 900 and 1000 K were favorable for the selective chlorination of iron. The rate was found to be first order with respect to chlorine concentration, and the observed effects of particle size, temperature, and the amount of carbon added were expressed quantitatively by using a mixed-control model.

Keywords

Magnetite Metallurgical Transaction Titaniferous Magnetite Chlorination Rate Selective Chlorination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    .M. Harris, A.W. Henderson, and T.T. Campbell: U.S. Bureau of Mines, Rep. Invest. 8165, 1976, 19 pp.Google Scholar
  2. 2.
    G.W. Elger, J.E. Tress, and R.R. Jordan:Light Met., 1982, pp. 1135-47.Google Scholar
  3. 3.
    B.P. Judd and E.R. Palmer:Proc. Australas. Inst. Min. Metall., 1973, vol. 247, pp. 23–33.Google Scholar
  4. 4.
    M.H. Tikkanan, T. Tyynela, and E. Vuoristo:Met. Soc. Conf., 1964, vol. 24, pp. 269–82.Google Scholar
  5. 5.
    J.A. Kahn:J. Met., 1984, vol. 36 (7), pp. 33–38.Google Scholar
  6. 6.
    W.E. Dunn, Jr.:Trans. AIME, 1960, vol. 218, pp. 6–12.Google Scholar
  7. 7.
    A.J. Morris and R.F. Jensen:Metall. Trans. B, 1976, vol. 7B, pp. 89–93.CrossRefGoogle Scholar
  8. 8.
    A. Bergholm:Trans. AIME, 1961, vol. 221, pp. 1121–29.Google Scholar
  9. 9.
    M. Ogawa, M. Aso, and H. Mitsunami:World Mining and Metal Technology, 1979, pp. 1937-45.Google Scholar
  10. 10.
    A.A. Rabie, M.Y. Saada, and S.Y. Ezz:Proc. Symp. of Inst. Min. Metall., 1968, pp. 501-05.Google Scholar
  11. 11.
    G.W. Elger, J.B. Wright, J.E. Tress, H.E. Bell, and R.R. Jordan: U.S. Bureau of Mines, Rep. Invest. 9002, 1986, 24 pp.Google Scholar
  12. 12.
    K.I. Rhee and H.Y. Sohn:Metall. Trans. B, 1990, vol. 21B, pp. 321–30.Google Scholar
  13. 13.
    K.I. Rhee and H.Y. Sohn:Metall. Trans. B, 1990, vol. 21B, pp. 331–40.Google Scholar
  14. 14.
    A.W. Nienow, P.N. Rowe, and L.Y. Cheung:Powder Technol., 1978, vol. 20, pp. 89–97.CrossRefGoogle Scholar
  15. 15.
    H.Y. Sohn:Metall. Trans. B, 1978, vol. 9B, pp. 89–96.Google Scholar
  16. 16.
    D.M. Himmelblau:Applied Nonlinear Programming, McGraw-Hill, Inc., New York, NY, 1972, pp. 149–57.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1990

Authors and Affiliations

  • K. I. Rhee
    • 1
  • H. Y. Sohn
    • 2
  1. 1.Rare Metals Research DepartmentKorea Institute of Energy and ResourcesDaejeonKorea
  2. 2.Department of Metallurgical EngineeringUniversity of UtahSalt Lake City

Personalised recommendations