Recent progress in the modeling of high-temperature creep and its application to alloy development

  • L. Shi
  • D. O. Northwood


Recent progress in the understanding of high-temperature creep of alloys is discussed in the context of theoretical modeling and its application to alloy development. Emphasis is placed upon those engineering alloys specifically designed for high-temperature applications, such as precipitation and dispersion-strengthened (DS) alloys and metal-matrix composites (MMCs). Currently, these theoretical models use one of two different approaches, (a) a phenomenological approach, which is used in such models as those based on the internal stress concept, and those based on empirical creep equations; and (b) micromechanical models that are based on dislocation mechanisms and the interactions of dislocations with solute atoms, second-phase particles, and other reinforcements such as fibers. All these theoretical models have a common goal, namely, the understanding of high-temperature strengthening mechanisms and the relationship between high-temperature strength and the micromechanical mechanisms during high-temperature plastic deformation of the alloys. These theoretical studies can provide information that is useful in alloy design and processing, such as the selection of alloy chemistry, and the optimization of phase microstructural features (e.g., reinforcement amount, shape, size, and distribution; matrix grain size; and matrix and reinforcement interfaces) by optimization of processing methods.


alloy development creep dislocations mechanisms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. D. Sherby and P. M. Burke, Mechanical Behavior of Crystalline Solids at Elevated Temperature,Prog. Mater Sci, Vol 13 (No. 7), 1968, p 323–390Google Scholar
  2. 2.
    E. N. da C. Andrade, On the Viscous Flow in Metals, and Allied Phenomena,Proc. R. Soc. (London) A, Vol 84 (No. 567), 1911, p 1–12Google Scholar
  3. 3.
    E. N. da C. Andrade, The Flow in Metals Under Large Constant Stresses,Proc. R. Soc. (London) A, Vol 90 (No. 619), 1914, p 329–342Google Scholar
  4. 4.
    F. C. Monkman and N. J. Grant, An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests,Proc. ASTM, vol 56,1958, p 593–620Google Scholar
  5. 5.
    F. Dobes and K. Milicka, The Relationship Between Minimum Creep Rate and Time to Fracture,Mer. Sci., Vol 10 (No. 11), 1976, p 382–384Google Scholar
  6. 6.
    C. Phaniraj, M. Nandagopal, S.L. Mannan, and P. Rodriguez, The Relationship Between Transient and Steady State Creep in AISI 304 Stainless Steel,Acta Metall. Mater, Vol 39 (No. 7), 1976, p 1651–1656Google Scholar
  7. 7.
    The Superalloys, C.T. Sims and W.C. Hagel, Ed., John Wiley & Sons, 1972Google Scholar
  8. 8.
    Superalloys II: High Temperature Materials for Aerospace and Industrial Power, C.T. Sims, N.S. Stoloff, and W.C. Hagel, Ed., John Wiley & Sons, 1987Google Scholar
  9. 9.
    T.M. Pollock and A.S. Argon, Creep Resistance of CMSX-3 Nickel-Base Superalloy Single Crystals,Acta Metall. Mater, Vol 40 (No. 1), 1992, p 1–30Google Scholar
  10. 10.
    Powder Metallurgy, W. Leszynski, Ed., Interscience, 1961Google Scholar
  11. 11.
    G. H. Gessinger,Powder Metallurgy of Superalloys, Butterworth, 1984Google Scholar
  12. 12.
    M. F. Ashby, A First Report on Sintering Diagram,Acta Metall., Vol 22 (No. 3), 1974, p 275–289Google Scholar
  13. 13.
    F.B. Swinkels and M.F. Ashby, A Second Report on Sintering Diagram,Acta Metall, Vol 29 (No. 2), 1981, p 259–281Google Scholar
  14. 14.
    E. Arzt, M.F. Ashby, and K.E. Easterling, Practical Applications of Hot-Isostatic Pressing Diagrams: Four Case Studies,Metall. Trans. A, Vol 14 (No. 2), 1983, p 211–221Google Scholar
  15. 15.
    A.C.F. Cocks, The Structure of Constitutive Laws for the Sintering of Fine Grained Materials,Acta Metall. Mater, Vol 42 (No. 7), 1994, p 2191–2210Google Scholar
  16. 16.
    J.H. Gittus,Creep, Viscoelasticity and Creep Fracture in Solids, John Wiley & Sons, 1975Google Scholar
  17. 17.
    J. P Poirier,Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge University Press, 1985Google Scholar
  18. 18.
    F. Garofalo,Fundamentals of Creep and Creep-Rupture in Metals, MacMillan, 1965Google Scholar
  19. 19.
    R.W Evans and B. Wilshire,Creep of Metals and Alloys, Institute of Metals, 1985Google Scholar
  20. 20.
    T.G. Langdon, Grain Boundary Deformation Processes,Deformation of Ceramic Materials, R.C. Bradt and R.E. Tressler, Ed., Plenum Publishing, 1975, p 101–126Google Scholar
  21. 21.
    A.G. Evans and T.G. Langdon, Structural Ceramics,Prog. Mater Sci., Vol 2 (No. 3/4), 1976, p 171–441Google Scholar
  22. 22.
    H.J. Frost and M.F. Ashby,Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, 1982Google Scholar
  23. 23.
    W.R. Cannon and T.G. Langdon, Creep of Ceramics, Part I Mechanical Characteristics,J. Mater Sci., Vol 18 (No. 1), 1983, p 1–50Google Scholar
  24. 24.
    W.R. Cannon and T.G. Langdon, Creep of Ceramics, Part II An Examination of Flow Mechanism,J. Mater Sci., Vol 23 (No. 1), 1988, p 1–20Google Scholar
  25. 25.
    A. Kelly and N.H. Macmillan,Strong Solids, 3rd ed., Clarendon, 1986, p 223–231Google Scholar
  26. 26.
    Materials and Coatings to Resist High Temperature Corrosion, D.R. Holmes and A. Rahmel, Ed., Applied Science, 1978Google Scholar
  27. 27.
    R.W.K. Honeycombe,The Plastic Deformation of Metals, 2nd ed., Edward Arnold, 1984, p 393–394Google Scholar
  28. 28.
    F. A. Mohamed and T. G. Langdon, The Transition from Dislocation Climb to Viscous Glide in Creep of Solid Solution Alloys,Acta Metall, Vol 22 (No. 6), 1974, p 779–788Google Scholar
  29. 29.
    Q. P. Kong and Y. Li, On the Climb Process of Extended Dislocations During High Temperature Creep,Phys. Stat. Solidi, A, Vol 126 (No. 1), 1991, p 129–134Google Scholar
  30. 30.
    Q.P Kong and Y. Li, Investigation of the Climb of Extended Dislocations During High Temperature Creep,Philos. Mag. A, Vol 68 (No. 1), 1993, p 113–119Google Scholar
  31. 31.
    W. Ostwald, Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Kör per, (On the general isomers of red and yellow mercury oxide and the surface tension of solid bodies) Z.Phys. Chem., Vol 34 (No. 4), 1900, p 495–503 (in German)Google Scholar
  32. 32.
    I. M. Lifshitz and V.V. Slyozov, The Kinetics of Precipitation From Supersaturation Solid Solutions,J. Phys. Chem. Solids, Vol 19 (No. 1/2), p 35-50Google Scholar
  33. 33.
    C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), [Theory of aging of precipitates through disolution (Ostwald-Ripening)],Z.Elektrochem., Vol 65 (No. 7/8), 1961, p 581–591 (in German)Google Scholar
  34. 34.
    J.W. Martin and R.D. Doherty, Precipitate Coarsening: “Ostwald Ripening,”Stability of Microstructure in Metallic Systems, Cambridge University Press, 1976, p 173–244Google Scholar
  35. 35.
    H. Gleiter, Microstructure,Physical Metallurgy, 3rd ed., R.W. Cahn and P. Haasen, Ed., North-Holland Physics, 1983, p 649–712Google Scholar
  36. 36.
    Deformation, Processing, and Structure, G. Krauss, Ed., American Society for Metals, 1984Google Scholar
  37. 37.
    Flow and Fracture at Elevated Temperatures, R. Raj, Ed., American Society for Metals, 1985Google Scholar
  38. 38.
    Proc. 1st Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, Ed., Pineridge Press, 1981Google Scholar
  39. 39.
    Proc. 2nd Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, Ed., Pineridge Press, 1984Google Scholar
  40. 40.
    Proc. 3rd Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, Ed., Pineridge Press, 1987Google Scholar
  41. 41.
    Proc. 4th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, Ed., Pineridge Press, 1990Google Scholar
  42. 42.
    Proc. 5th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, Ed., Pineridge Press, 1993Google Scholar
  43. 43.
    A.H. Cottrell, Creep,Dislocations and Plastic Flow in Crystals, Oxford University Press, 1953, p 195–215Google Scholar
  44. 44.
    S. Takeuchi and A.S. Argon, Steady-State Creep of Single-Phase Crystalline Matter at High Temperature,J. Mater Sci., Vol 11 (No. 7), 1976, p 1542–1566Google Scholar
  45. 45.
    L. Shi and D.O. Northwood, Dislocation Network Models for Recovery Creep Deformation,J. Mater Sci., Vol 28 (No. 22), 1993, p 5963–5974Google Scholar
  46. 46.
    D.O. Northwood and I.O. Smith, Experimental Techniques for Probing the Micromechanisms of Creep: A Review,Met. Forum, Vol 8 (No. 4), 1985, p 237–249Google Scholar
  47. 47.
    A.H. Cottrell and M.A. Jaswon, Distribution of Solute Atoms Round a Slow Dislocation,Proc. R. Soc. (London) A, Vol 199 (No. 1056), 1949, p 104–114Google Scholar
  48. 48.
    J. Friedel,Dislocations, Pergamon Press, 1964, Ch XI, p 303–319; Hardness of a Crystal Containing Uniformly Distributed Impurities or Precipitates, Ch XIV p 368–384; Formation and Motion of Impurity Clouds, Ch XVI, p 405–414Google Scholar
  49. 49.
    F.A. Mohamed and T.G. Langdon, Creep Behavior of Ni-W Solid Solutions (Communications),Metall. Trans. A, Vol 6 (No. 4), 1975, p 927–928Google Scholar
  50. 50.
    F.A. Mohamed and T.G. Langdon, Creep Behavior of Ceramic Solid-Solution Alloys (Discussion and Notes),J. Am. Ceram. Soc, Vol 58 (No. 11–12), 1975, p 533–534Google Scholar
  51. 51.
    S. Takeuchi and A.S. Argon, Steady-State Creep of Alloys Due to Viscous Motion of Dislocations,Acta Metall., Vol 24 (No. 10), 1976, p 883–889Google Scholar
  52. 52.
    S. Takeuchi and A.S. Argon, Glide and Climb Resistance to the Motion of an Edge Dislocation Due to Dragging a Cottrell Atmosphere,Philos. Mag. A, Vol 40 (No. 1), 1979, p 65–75Google Scholar
  53. 53.
    R. Fuentes-Sasmlaniego, Theoretical Studies of Diffusional Processes in Solids Under Pressure, Ph.D. thesis, Stanford University, Stanford, CA, 1979Google Scholar
  54. 54.
    J.P. Hirth and J. Lothe, Dislocation—Point-Defect Interactions at Finite Temperatures,Theory of Dislocations, 2nd ed., Part 3, John Wiley & Sons, 1982, p 485–694Google Scholar
  55. 55.
    G.A. Henshall and A.K. Miller, Simplifications and Improvements in Unified Constitutive Equations for Creep and Plasticity—I. Equations Development,Acta Metall. Matee, Vol 38 (No. 11), 1990, p2101–2115Google Scholar
  56. 56.
    G.A. Henshall and A.K. Miller, Simplifications and Improvements in Unified Constitutive Equations for Creep and Plasticity—II. Behavior and Capabilities of the Model,Acta Metall. Mater, Vol 38 (No. 11), 1990, p 2117–2128Google Scholar
  57. 57.
    J. Weertman and J.R. Weertman, Mechanical Properties, Strongly Temperature-Dependent,Physical Metallurgy, 3rd ed., R.W. Cahn and P. Haasen, Ed., North-Holland Physics, 1983, p 1309–1340Google Scholar
  58. 58.
    J.E. Dorn, The Spectrum of Activation Energies for Creep,Creep and Recovery, American Society for Metals, 1957, p 255–283Google Scholar
  59. 59.
    D.A. Prokoshkin and E.V Vasil’eva, Temperature Dependence of Diffusion Rate of Metals,Dokl. Akad. Nauk SSSR, Vol 177 (No. 5, 1967, p 1069–1071Google Scholar
  60. 60.
    J.C.M. Li, Kinetics and Dynamics in Dislocation Plasticity,Dislocation Dynamics, A.R. Rosenfield, G.T. Hahn, A.L. Bernent, Jr., and R.I. Jaffe, Ed., McGraw-Hill, 1968, p 87–116Google Scholar
  61. 61.
    J. Weertman, Dislocation Climb Theory of Steady-State Creep,Trans. ASM, Vol 61 (No. 4), 1968, p 681–694Google Scholar
  62. 62.
    A.K. Mukherjee, J.E. Bird, and J.E. Dorn, Experimental Correlations for High-Temperature Creep,Trans. ASM, Vol 62 (No. 1), 1969, p 155–179Google Scholar
  63. 63.
    H.E. Evans and G. Knowles, AModel of Creep in Pure Materials,Acta Metall., Vol 25 (No. 8), 1977, p 963–975Google Scholar
  64. 64.
    H.E. Evans and G. Knowles, Dislocation Creep in Non-Metallic Materials,Acta Metall., Vol 26 (No. 1), 1978, p 141–145Google Scholar
  65. 65.
    O.D. Sherby and J. Weertman, Diffusion-Controlled Dislocation Creep: ADefense,Acta Metall., Vol 27 (No. 3), 1979, p 387–400Google Scholar
  66. 66.
    K. Milicka, Constant Structure Creep in Metals After Stress Reduction in Steady State Stage,Acta Metall. Mater, Vol 41 (No. 4), 1993, p 1163–1172Google Scholar
  67. 67.
    R.F. Feynman, R.B. Leighton, and M. Sands, The Principles of Statistical Mechanics,The Feynman Lectures on Physics, Vol 1, Addison-Wesley, 1963, p40-l-to 40-10Google Scholar
  68. 68.
    A.S. Krausz and H. Eyring, Deformation in Creep and in Creep Recovery,Deformation Kinetics, John Wiley & Sons, 1975, p 180–225Google Scholar
  69. 69.
    U.F. Kocks, A.S. Argon, and M.E Ashby, Thermodynamics and Kinetics of Slip,Prog. Matei Sci., Vol 19,1975, p 1–288Google Scholar
  70. 70.
    F.H. Norton, Discussion of Results,The Creep of Steel at High Temperatures, McGraw-Hill, 1929, p 67–70Google Scholar
  71. 71.
    J.E. Bird, A.K. Mukherjee, and J.E. Dorn, Correlations Between High-Temperature Creep Behavior and Structure,Quantitative Relation Between Properties and Microstructures, D.G. Brandon and A. Rosen, Ed., Israel University Press, 1969, p 255–342Google Scholar
  72. 72.
    J. Weertman, Steady-State Creep Through Dislocation Climb,J. Appl. Phys., Vol 28 (No. 3), 1957, p 362–364Google Scholar
  73. 73.
    J. Weertman, High Temperature Creep Produced by Dislocation Motion,Rate Processes in Plastic Deformation of Materials, J.C.M. Li and A.K. Mukherjee, Ed., American Society for Metals, 1975, p 315–336Google Scholar
  74. 74.
    J. Weertman, Steady-State Creep of Crystals,J. Appl. Phys., Vol 28 (No. 10), 1957, p 1185–1189Google Scholar
  75. 75.
    R. Chang, Dislocation Theories of the High-Temperature Creep of Crystalline Solids,The Physics and Chemistry of Ceramics, C. Klingsberg, Ed., Gordon and Breach Science Publishers, 1963, p 275–285Google Scholar
  76. 76.
    F.R.N. Nabarro, Steady-State Diffusional Creep,Philos. Mag., Vol 16 (No. 140), 1967, p 231–237Google Scholar
  77. 77.
    C.R. Barrett and W.D. Nix, AModel for Steady State Creep Based on the Motion of Jogged Screw Dislocations,Acta Metall., Vol 13 (No. 12), 1965, p 1247–1258Google Scholar
  78. 78.
    L.I. Ivanov and VA. Yanushkevich, High-Temperature Mechanism of Steady-State Creep in B.C.C. Metals,Fiz. Metal. Metalloved., Vol 17 (No. 1), 1964, p 112–117Google Scholar
  79. 79.
    W. Blum, Role of Dislocation Annihilation During Steady-State Deformation,Phys. Stat. Solidi B, Vol 45 (No. 2), p 561-571Google Scholar
  80. 80.
    R. Lagneborg, Development and Refinement of the Recovery-Creep Theory,Met. Sci. J., Vol 3 (No. 9), 1969, p 161–168Google Scholar
  81. 81.
    R. Lagneborg, A Modified Recovery-Creep Model and Its Evaluation,Met. Sci. J., Vol 6 (No. 7), 1972, p 127–133Google Scholar
  82. 82.
    P. Öström and R. Lagneborg, A Recovery-Athermal Glide Creep Model,J. Eng. Mater Tech. (Trans. ASME Series H), Vol 98 (No. 2), 1976, p 114–124Google Scholar
  83. 83.
    P Öström and R. Lagneborg, A Dislocation Link Length Model for Creep,Res Mechanica, Vol 1 (No. 1), 1980, p 59–79Google Scholar
  84. 84.
    J.H. Gittus, Development of a Theoretical Equation for Steady-State Dislocation Creep and Comparison with Data,Acta Metall., Vol 22 (No. 6), 1974, p 789–791Google Scholar
  85. 85.
    J.H. Gittus, Theoretical Equation for Steady State Dislocation Creep: Effect of Solute Drag,Acta Metall., Vol 22 (No. 9), 1974, p 1179–1181Google Scholar
  86. 86.
    A.J. Ardell and M.A. Przystupa, Dislocation Link-Length Statistics and Elevated Temperature Deformation of Crystals,Mech. Mater, Vol 3 (No. 4), 1984, p 319–332Google Scholar
  87. 87.
    L. Shi and D.O. Northwood, On Dislocation Link Length Statistics for Plastic Deformation of Crystals,Phys Stat. Solidi A, Vol 137 (No. 1), 1993, p 75–85Google Scholar
  88. 88.
    F.R.N. Nabarro, Deformation of Crystals by the Motion of Single Ions,Report of a Conference on Strength of Solids, The Phys. Soc, London, 1948, p 75–90Google Scholar
  89. 89.
    C. Herring, Diffusional Viscosity of a Polycrystalline Solid,J. Appl. Phys., Vol 21 (No. 5), 1950, p 437–445Google Scholar
  90. 90.
    R.L. Coble, AModel for Boundary Diffusion Controlled Creep in Polycrystalline Materials,J. Appl. Phys., Vol 34 (No. 6), 1963, p 1679–1682Google Scholar
  91. 91.
    F.W. Crossman and M.F. Ashby, The Non-Uniform Flow of Poly-crystals by Grain-Boundary Sliding Accommodated by Power-Law Creep,Acta Metall., Vol 23 (No. 4), 1975, p 425–440Google Scholar
  92. 92.
    E. Orowan, The Creep of Metals,J. West Scotland Iron Steel Inst., Vol 54, 1946/1947, p 45–96Google Scholar
  93. 93.
    T.G. Langdon, Grain Boundary Sliding as a Deformation Mechanism During Creep,Philos. Mag., Vol 22 (No. 178), 1970, p 689–700Google Scholar
  94. 94.
    R.C. Gifkins, The Grain-Size Dependence of Creep Rate in Recovery Creep,J. Aust. Inst. Met., Vol 18 (No. 3), 1973, p 137–145Google Scholar
  95. 95.
    D.J. Dingley and D. McLean, Components of the Flow Stress of Iron,Acta Metall., Vol 15 (No. 5), 1967, p 885–901Google Scholar
  96. 96.
    A. Odén, E. Lind, and R. Lagneborg, Dislocation Distributions During Creep and Recovery of a 20%Cr-35%Ni Steel at 700 °C,Proc. of a Meeting on Creep Strength in Steel and High Temperature Alloys, Iron and Steel Institute, 1970, p 60-66Google Scholar
  97. 97.
    M.R. Staker and D.L. Holt, The Dislocation Cell Size and Dislocation Density in Copper Deformed at Temperatures Between 25 and 700 °C,Acta Metall, Vol 20 (No. 4), 1972, p 569–579Google Scholar
  98. 98.
    J.B. Bilde-Sörensen, Dislocation Link Length Distribution in Creep-Deformed Magnesium Oxide,Acta Metall., Vol 21 (No. 11), 1973, p 1495–1501Google Scholar
  99. 99.
    L.E. Murr and D. Kuhlmann-Wilsdorf, Experimental and Theoretical Observations on the Relationship Between Dislocation Cell Size, Dislocation Density, Residual Hardness, Peak Pressure and Pulse Duration in Shock-Loaded Nickel,Acta Metall., Vol 26 (No. 5), 1978, p 847–857Google Scholar
  100. 100.
    J.D. Parker and B. Wilshire, Rate-Controlling Processes During Creep of Super-Purity Aluminium,Philos. Mag., Vol 41 (No. 5), 1980, p 665–680Google Scholar
  101. 101.
    F.R. Castro-Fernández and C.M. Sellars, Relationship Between Room-Temperature Proof Stress, Dislocation Density, and Subgrain Size,Philos. Mag. A, Vol 60 (No. 4), 1989, p 487–506Google Scholar
  102. 102.
    P. Lin, S.S. Lee, and A.J. Ardell, Scaling Characteristics of Dislocation Link Length Distributions Generated During the Creep of Crystals,Acta Metall., Vol 37 (No. 2), 1989, p 739–748Google Scholar
  103. 103.
    B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf, Evolution of F.C.C. Deformation Structures in Polyslip,Acta Metall. Mater, Vol 40 (No. 2), 1992, p 205–219Google Scholar
  104. 104.
    B. Wang, F. Sun, Q. Meng, and W. Xu, An Approach to Mathematical Modeling of Dislocation Link Length Distribution in Metal,Ada Metall. Sin. A, Vol 28 (No. 3), 1992, p 100–103Google Scholar
  105. 105.
    S.O. Ojediran and O. Ajaja, The Bailey-Orowan Equation,J. Mater Sci., Vol 23 (No. 11), 1988, p 4037–4040Google Scholar
  106. 106.
    L. Shi and D.O. Northwood, Creep of an AISI 310 Type Stainless Steel and Its Numerical Simulation Using the Öström-Lagneborg Creep Model,Acta Metall. Mater, Vol 41 (No. 12), 1993, p 3393–3400Google Scholar
  107. 107.
    L. Shi and D.O. Northwood, Strain-Hardening and Recovery During the Creep of Polycrystalline Magnesium,Acta Metall. Mater, Vol 42 (No. 3), 1994, p 871–877Google Scholar
  108. 108.
    L. Shi and D.O. Northwood, On Dislocation Link Length Statistics for Constant Strain Rate Deformation,Phys. Stat. Solidi A, Vol 140(No. 1), 1993, p 87–95Google Scholar
  109. 109.
    L. Shi and D.O. Northwood, On Dislocation Link Length Statistics for Strain Hardening and Recovery During Elevated Temperature Plastic Deformation,Fourth LEDS Conference, Winnipeg, Manitoba, 1995Google Scholar
  110. 110.
    D. Kuhlmann-Wilsdorf and L. Shi, Theory of Workhardening Stages, unpublished research, University of Virginia, 1994Google Scholar
  111. 111.
    A.H. Cottrell and R.J. Stokes, Effects of Temperature on the Plastic Properties of Aluminium Crystals,Proc. R. Soc. (London) A, Vol 233 (No. 112), 1955, p 17–32Google Scholar
  112. 112.
    J. Weertman and J.R. Weertman, Mechanical Properties, Mildly Temperature-Dependent,Physical Metallurgy, 3rd ed., R.W. Cahn and P. Haasen, Ed., North-Holland Physics, 1983, p 1259–1307Google Scholar
  113. 113.
    G.I. Taylor, The Mechanism of Plastic Deformation of Crystals. Part I.—Theoretical,Proc. R. Soc. (London) A, Vol 145 (No. 855), 1934, p 362–387Google Scholar
  114. 114.
    G.I. Taylor, The Mechanism of Plastic Deformation of Crystals. Part II.—Comparison with Observations,Proc. R. Soc. (London) A, Vol 145 (No. 855), 1934, p 388–404Google Scholar
  115. 115.
    D. Kuhlmann-Wilsdorf, A New Theory of Workhardening,Trans. Metall. Soc. AIME, Vol 224 (No. 10), 1962, p 1047–1061Google Scholar
  116. 116.
    D. Kuhlmann-Wilsdorf, Unified Theory of State II and III of Workhardening in Pure FCC Metal Crystals,Workhardening, J.P. Hirth and J. Weertman, Ed., Gordon and Breach Science Publishers, 1968, p 97–132Google Scholar
  117. 117.
    D. Kuhlmann-Wilsdorf, Recent Process in Understanding of Pure Metal and Alloy Hardening,Work Hardening in Tension and Fatigue, A.W Thompson, Ed., AIME, 1977, p 1–43Google Scholar
  118. 118.
    D. Kuhlmann-Wilsdorf, Theory of Plastic Deformation: Properties of Low Energy Dislocation Structures,Mater Sci. Eng. A, Vol 113 (No. 7), 1989, p 1–41Google Scholar
  119. 119.
    W.R. Cannon, The Contribution of Grain Boundary Sliding to Axial Strain During Diffusion Creep,Philos. Mag., Vol 25 (No. 6), 1972, p 1489–1497Google Scholar
  120. 120.
    I.M. Lifshitz, On the Theory of Diffusion-Viscous Flow of Polycrystalline Bodies,Sov. Phys. JETP, Vol 17 (No. 4), p 909-920Google Scholar
  121. 121.
    W.A. Rachinger, Relative Grain Translation in the Plastic Flow of Aluminium,J. Inst. Met., Vol 81 (No. 1), 1952/1953, p 33–41Google Scholar
  122. 122.
    J. Bardeen and C. Herring, Diffusion in Alloys and the Kirkendall Effect,Imperfections in Nearly Perfect Crystals, W. Shockely, J.H. Hollomon, R. Maurer, and F. Seitz, John Wiley & Sons, 1952, p 261–288Google Scholar
  123. 123.
    F.V Lenel and G.S. Ansell, ATheory of Dispersion Strengthening,Powder Metallurgy, W. Leszynski, Ed., Interscience, p 267–307Google Scholar
  124. 124.
    A.H. Clauer and B.A. Wilcox, Structure Sensitive Creep Behavior of Crystalline Solids,Inelastic Behaviour of Solids, M.F. Kanninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee, Ed., McGraw-Hill, 1970, p 301–325Google Scholar
  125. 125.
    F.A. Mohamed, K.-T. Park, and E.J. Lavernia, Creep Behavior of Discontinuous SiC-Al Composites,Mater Sci. Eng. A, Vol 150 (No. 1), 1992, p 21–35Google Scholar
  126. 126.
    P.W. Davies, G. Nelmes, K.R. Williams, and B. Wilshire, Stress-Change Experiments During High-Temperature Creep of Copper, Iron, and Zinc,Met. Sci. J., Vol 7 (No. 5), 1973, p 87–92Google Scholar
  127. 127.
    K.R. Williams and B. Wilshire, On the Stress- and Temperature-Dependence of Creep of Nimonic 80A,Mer. Sci. X, Vol 7 (No. 9), 1973, p 176–179Google Scholar
  128. 128.
    J.D. Parker and B. Wilshire, The Effect of a Dispersion of Cobalt Particles on High-Temperature Creep of Copper,Met. Sei. J., Vol 9 (No. 5), 1975, p 248–252Google Scholar
  129. 129.
    S. Purushothaman and J.K. Tien, Role of Back Stress in the Creep Behavior of Particle Strengthened Alloys,Acta Metall., Vol 26 (No. 4), 1978, p 519–528Google Scholar
  130. 130.
    D. Lazarus, Diffusion in Metals,Solid State Phys., Vol 10, 1960, p71–126Google Scholar
  131. 131.
    P.G. Shewmon,Diffusion in Solids, McGraw-Hill, 1963Google Scholar
  132. 132.
    N.L. Peterson, Diffusion in Metals,Solid State Phys., Vol 22, 1968Google Scholar
  133. 133.
    CRC Handbook of Chemistry and Physics, 74th ed., D.R. Lide, Ed., CRC Press, 1993–1994Google Scholar
  134. 134.
    G.S. Ansell and J. Weertman, Creep of Dispersion-Hardened Aluminum Alloy,Trans. AIME, Vol 215 (No. 10), 1959, p 838–843Google Scholar
  135. 135.
    R. Lagneborg, Recovery Creep in Materials Hardened by a Second Phase,J. Mater. Sci., Vol 3 (No. 11), 1968, p 596–602Google Scholar
  136. 136.
    J.L. Strudel, Mechanical Properties of Multiphase Alloys,Physical Metallurgy, 3rd ed., R.W. Cahn and P. Haasen, Ed., North Holland Physics, 1983, p 1411–1486Google Scholar
  137. 137.
    W.C. Oliver and W.D. Nix, High Temperature Deformation of Oxide Dispersion Strengthened Al and Al-Mg Solid Solutions,Acta Metall., Vol 30 (No. 7), 1982, p 1335–1347Google Scholar
  138. 138.
    E. Orowan, Dislocations and Mechanical Properties,Dislocations in Metals, M. Cohn, Ed., AIME, 1954, p 69Google Scholar
  139. 139.
    U.F. Kocks, AStatistical Theory of Flow Stress and Work-Hardening,Philos. Mag., Vol 13 (No. 123), 1966, p 541–566Google Scholar
  140. 140.
    R.S.W. Shewfelt and L.M. Brown, High-Temperature Strength of Dispersion-Hardened Single Crystals, II. Theory,Philos. Mag., Vol 35 (No. 4), 1977, p 945–962Google Scholar
  141. 141.
    E. Arzt and M.F. Ashby, Threshold Stresses in Materials Containing Dispersed Particles,Scr Metall., Vol 16 (No. 11), 1982, p 1285–1290Google Scholar
  142. 142.
    E. Arzt and D.S. Wilkinson, Threshold Stresses for Dislocation Climb Over Hard Particles: The Effect of an Attractive Interaction,Acta Metall., Vol 34 (No. 10), 1986, p 1893–1898Google Scholar
  143. 143.
    E. Arzt and J. Rösier, The Kinetics of Dislocation Climb Over Hard Particles—II. Effects of an Attractive Particle-Dislocation Interaction,Acta Metall., Vol 36 (No. 4), 1988, p 1053–1060Google Scholar
  144. 144.
    J. Rosier and E. Arzt, A New Model-Based Creep Equation for Dispersion Strengthened Materials,Acta Metall. Mater, Vol 38 (No. 4), 1990, p 671–683Google Scholar
  145. 145.
    A. Orlová and J. Cadek, On Rösier and Arzt’s New Model of Creep in Dispersion Strengthened Alloys,Acta Metall. Mater, Vol 40 (No. 8), 1992, p 1865–1871Google Scholar
  146. 146.
    G.M. Pharr and W.D. Nix, A Comparison of the Orowan Stress with the Threshold Stress for Creep for Ni-20Cr-2ThO2 Single Crystals,Scr Metall.,Vol 10 (No. 11), 1976, p 1007–1010Google Scholar
  147. 147.
    R. Lagneborg, Bypassing of Dislocations Past Particles by a Climb Mechanism,Scr. Metall., Vol 7 (No. 6), 1973, p 605–614Google Scholar
  148. 148.
    W. Blum and B. Reppich, Creep of Particle-Strengthened Alloys,Creep Behaviour of Crystalline Solids, B. Wilshire and R.W. Evans, Ed., Pineridge Press, 1985, p 83–135Google Scholar
  149. 149.
    J.H. Hausselt and W.D. Nix, A Model for High Temperature Deformation of Dispersion Strengthened Metals Based on Substructural Observations in Ni-20Cr-2ThO2,Acta Metall., Vol 25 (No. 12), 1977, p 1491–1502Google Scholar
  150. 150.
    D.J. Srolovitz, R.A. Petkovic-Luton, and M.J. Luton, Edge Dislocation-Circular Inclusion Interactions at Elevated Temperatures,Acta Metall., Vol 31 (No. 12), 1983, p 2151–2159Google Scholar
  151. 151.
    D.R. Srolovitz, M.J. Luton, R. Petkovic-Luton, D.M. Barnett, and W.D. Nix, Diffusionally Modified Dislocation-Particle Elastic Interactions,Acta Metall., Vol 32 (No. 7), 1984, p 1079–1088Google Scholar
  152. 152.
    V.C. Nardone and J.K. Tien, Pinning of Dislocation on the Departure Side of Strengthening Dispersoids,Scr Metall., Vol 17 (No. 4), 1983, p 467–470Google Scholar
  153. 153.
    J.H. Schröder and E. Arzt, Weak Beam Studies of Dislocation/Dispersoid Interaction in an ODS Superalloy,Scr Metall., Vol 19 (No. 9), 1985, p 1129–1134Google Scholar
  154. 154.
    R.S. Herrik, J.R. Weertman, R. Petkovic-Luton, and M.J. Luton, Dislocation/Particle Interactions in an Oxide Dispersion Strengthened Alloy,Scr Metall., Vol 22 (No. 12), 1988, p 1879–1884Google Scholar
  155. 155.
    A. Orlová, K. Kucharová, J. Brezina, J. Krejcí, and J. Cadek, High Temperature Creep in an Al4C3 Dispersion Strengthened Aluminium Alloy in Tension and Compression,Scr Metall. Mater, Vol 29 (No. 1), 1993, p 63–68Google Scholar
  156. 156.
    G. Schoek,Dislocations in Solids, Vol 3, F.R.N. Nabarro, Ed., North-Holland Physics, 1980, p.63–163Google Scholar
  157. 157.
    S.T. Mileiko, Steady State Creep of a Composite Material with Short Fibres,J. Mater Sci., Vol 5 (No. 3), 1970, p 254–261Google Scholar
  158. 158.
    D. McLean, Viscous Flow of Aligned Composites,J. Mater Sci., Vol 7 (No. 1), 1972, p 98–104Google Scholar
  159. 159.
    A. Kelly and K.N. Street, Creep of Discontinuous Fibre Composites, I. Experimental Behaviour of Lead-Phosphor Bronze,Proc. R. Soc. (London) A, Vol 328 (No. 1573), 1972, p 267–282Google Scholar
  160. 160.
    A. Kelly and K.N. Street, Creep of Discontinuous Fibre Composites, II. Theory for the Steady-State,Proc. R. Soc. (London) A, Vol 328 (No. 1573), 1972, p 283–293Google Scholar
  161. 161.
    H. Lilholt, Relations Between Matrix and Composite Creep Behaviour,Prvc. RisφInt. Symp. on Metallurgy and Materials Science, 3rd (Fatigue and Creep of Composites Materials), H. Lilholt and R. Talreja, Ed., Risφ) National Laboratory, 1982, p 63–76Google Scholar
  162. 162.
    V.C. Nardone and K.M. Prewo, On the Strength of Discontinuous Silicon Carbide Reinforced Aluminum Composites,Scr Metall., Vol 20 (No. 1), 1986, p 43–48Google Scholar
  163. 163.
    M. Taya and H. Lilholt, Modeling of the Second and Third Stage Creep Rates of Aligned Short Fiber Metal Matrix Composites,Advances in Composite Materials and Structures, S.S. Wang and Y. Rajapakse, Ed., ASME, 1986, p 21–27Google Scholar
  164. 164.
    T. Morimoto, T. Yamaoko, H. Lilholt, and M. Taya, Second Stage Creep of SiC Whisker/6061 Aluminum Composite at 573 K,J. Eng. Mater Tech. (Trans. ASME, Series H), Vol 110 (No. 2), 1988, p 70–76Google Scholar
  165. 165.
    T.L. Dragone and W.D. Nix, Geometrie Factors Affecting the Internal Stress Distribution and High Temperature Creep Rate of Discontinuous Fiber Reinforced Metals,Acta Metall. Mater, Vol 38 (No. 10), 1990, p 1941–1953Google Scholar
  166. 166.
    M. Tanaka, Prediction of Creep Deformation in Ductile Two-Phase Alloys by a Continuum Mechanics Model,J. Mater Sci., Vol 28 (No. 10), 1993, p 2750–2756Google Scholar
  167. 167.
    G. González-Doncel and O.D. Sherby, High Temperature Creep Behavior of Metal Matrix Aluminum-SiC Composites,Acta Metall. Mater, Vol 41 (No. 10), 1993, p 2797–2805Google Scholar
  168. 168.
    S. Purushothaman and J.K. Tien, Role of Back Stress in the Creep Behavior of Particle Strengthened Alloys,Acta Metall., Vol 26 (No. 4), 1978, p 519–528Google Scholar
  169. 169.
    S. Purushothaman, O. Ajaja, and J.K. Tien, On the Concept of Back Stress in Particle Strengthened Alloys,Strength of Metals and Alloys, Vol 1, P. Haasen, V. Gerold, and G. Kostorz, Ed., Pergamon, 1979, p 251–257Google Scholar
  170. 170.
    O. Ajaja, T.E. Howson, S. Purushothaman, and J.K. Tien, The Role of the Alloy Matrix in the Creep Behavior of Particle-Strengthened Alloys.Mater Sci. Eng., Vol 44 (No. 2), 1980,p 165–172Google Scholar
  171. 171.
    J.S. Benjamin, Dispersion Strengthened Superalloys by Mechanical and Alloying,Metall. Trans., Vol 1 (No. 10), 1970, p 2943–2951Google Scholar
  172. 172.
    J.S. Benjamin and M.J. Bomford, Dispersion Strengthened Aluminum Made by Mechanical Alloying,Metall. Trans. A, Vol 8 (No. 8), 1977, p 1301–1305Google Scholar
  173. 173.
    P.S. Gilman and J.S. Benjamin, Mechanical Alloying,Ann. Rev. Mater Sci., Vol 13, 1983, p 279–300Google Scholar
  174. 174.
    N.S. Stoloff, Fundamentals of Strengthening,The Superalloys, C.T. Sims and W.C. Hagel, Ed., Wiley, 1972, p 79–111Google Scholar
  175. 175.
    P. Haasen, Mechanical Properties of Solid Solutions,Fundamental Aspects of Structural Alloy Design, R.I. Jaffee and B.A. Wilcox, Ed., Plenum Publishing, 1975, p 3–25Google Scholar
  176. 176.
    Alloy and Structural Design, J.K. Tien and G.S. Ansell, Ed., Academic Press, 1976Google Scholar
  177. 177.
    L. Shi, J. Chen, and D.O. Northwood, Inclusion Control in a 16Mn Steel Using a Combined Rare Earth and Calcium Treatment,J. Mater Eng., Vol 13 (No. 4), 1991, p 273–279Google Scholar
  178. 178.
    L. Shi, J. Chen, and D.O. Northwood, Effect of Rare Earth and Calcium Treatments on the Mechanical, Physical, and Electrochemical Properties of a 16Mn Steel,J. Maten Eng. Perform., Vol 1 (No. 1), 1992, p 21–28Google Scholar
  179. 179.
    L. Shi and D.O. Northwood, Effect of Rare-Earth and Calcium Treatment on the Banded Microstructure and Fracture Properties of a 16 Mn Steel,J. Mater Sci., Vol 27 (No. 19), 1992, p 5343–5347Google Scholar
  180. 180.
    L. Shi, D.O. Northwood, and Z. Cao, Alloy Design and Microstructure of a Biomedical Co-Cr Alloy,J. Mater Sci., Vol 28 (No. 5), 1993, p 1312–1316Google Scholar
  181. 181.
    L. Shi, D.O. Northwood, and Z. Cao, The Properties of a Wrought Biomédical Cobalt-Chromium Alloy,J. Mater Sci., Vol 29 (No. 5), 1994, p 1233–1238Google Scholar
  182. 182.
    Intermetallic Compounds, J.H. Westbrook, Ed., John Wiley & Sons, 1967Google Scholar
  183. 183.
    Alloying, J.L. Walter, M.R. Jackson, and C.T. Sims, Ed., American Society for Metals, 1980Google Scholar
  184. 184.
    R. Raj and M.F. Ashby, On Grain Boundary Sliding and Diffusional Creep,Metall. Trans., Vol 2 (No. 4), 1971, p 1113–1127Google Scholar
  185. 185.
    M.F. Ashby and R.A. Verrall, Diffusion-Accommodated Flow and Superplasticity.Acta Metall., Vol 21 (No. 2), 1973, p 149–163Google Scholar
  186. 186.
    R.C. Gifkins, Grain-Boundary Sliding and Its Accommodation During Creep and Superplasticity,Metall. Trans. A, Vol 7 (No. 8), 1976, p 1225–1232Google Scholar
  187. 187.
    A.K. Ghosh and R. Raj, Grain Size Distribution Effects in Superplasticity,Acta Metall., Vol 29 (No. 4), 1981, p 607–616Google Scholar
  188. 188.
    R. Raj, Creep in Polycrystalline Aggregates by Matter Transport Through a Liquid Phase,J. Geophys. Res., Vol 87 (No. B6), 1982, p 4731–4739Google Scholar
  189. 189.
    G.M. Pharr and M.F. Ashby, On Creep Enhanced by a Liquid Phase,Acta Metall., Vol 31 (No. 1), 1983, p 129–138Google Scholar
  190. 190.
    D.R. Clarke, High-Temperature Deformation of a Polycrystalline Alumina Containing an Intergranular Glass Phase,J. Mater Sci., Vol 20 (No. 4), 1985, p 1321–1332Google Scholar
  191. 191.
    B.L. Vaandrager and G.M. Pharr, Compressive Creep of Copper Containing a Liquid Bismuth Intergranular Phase,Acta Metall., Vol 37 (No. 4), 1989, p 1057–1066Google Scholar
  192. 192.
    J.R. Dryden, D. Kucerovsky, D.S. Wilkinson, and D.F. Watt, Creep Deformation Due to a Viscous Grain Boundary Phase,Acta Metall., Vol 37 (No. 7), 1989, p 2007–2015Google Scholar
  193. 193.
    R.C. Gifkins, Factors Influencing Deformation of Superplastic Alloys. Part I: Grain-Size Distribution,Mater Forum, Vol 13 (No. 4), 1989, p 279–287Google Scholar
  194. 194.
    R.C. Gifkins, Factors Influencing Deformation of Superplastic Alloys. Part II: Grain-Size Boundary Sliding,Mater Forum, Vol 15(No. 1), 1991, p 82–94Google Scholar
  195. 195.
    L. Shi and D.O. Northwood, A“Thase” Approach to Superplastic Deformation,Acta Metall. Mater, Vol 40 (No. 8), 1992, p 2069–2074Google Scholar
  196. 196.
    M.M. Chadwick, D.S. Wilkinson, and J.R. Dryden, Creep Due to a Non-Newtonian Grain Boundary Phase,J. Am. Ceram. Soc., Vol 75 (No. 9), 1992, p 2327–2334Google Scholar
  197. 197.
    M.M. Chadwick, R.S. Jupp, and D.S. Wilkinson, Creep Behavior of a Sintered Silicon Nitride,J. Am. Ceram. Soc., Vol 76 (No. 2), 1993, p 385–396Google Scholar
  198. 198.
    J.W. Martin, Micromechanisms at Elevated Temperatures,Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, 1980, p 151–192Google Scholar
  199. 199.
    H.E. Evans,Mechanisms of Creep Fracture, Elsevier, 1984Google Scholar
  200. 200.
    H.G.F. Wilsdorf, Dispersion Strengthening of Aluminum Alloys,Dispersion Strengthened Aluminum Alloys, Y-W. Kim and W. Griffith, Ed., TMS, 1988, p 3–29Google Scholar
  201. 201.
    J.A. Hawk, P.K. Mirchandani, R.C. Benn, and H.G.F. Wilsdorf, Evaluation of the Elevated Temperature Strength and Microstructural Stability of Dispersion Strengthened MA Aluminum Alloys,Dispersion Strengthened Aluminum Alloys, Y-W. Kim and W. Griffith, Ed., TMS, 1988, p 517–537Google Scholar
  202. 202.
    H.G.F. Wilsdorf and D. Kuhlmann-Wilsdorf, Work Softening and Hall-Petch Hardening in Extruded Mechanically Alloyed Alloys,Mater Sci. Eng. A, Vol 164 (No. 1/2), 1993, p 1–14Google Scholar
  203. 203.
    W. Schneider and H. Mughrabi, Investigation of the Creep and Rupture Behaviour of the Single-Crystal Nickel-Base Superalloy CMSX-4 Between 800 °C and 1100 °C,Proc. of 5th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, Ed., The Inst. of Materials, 1993, p 209–220Google Scholar
  204. 204.
    T. Yokokawa, K. Ohno, H. Harada, S. Nakazawa, T. Yamagata, and M. Yamazaki, Towards an Intelligent Computer Program for the Design of Ni-Base Superalloys,Proc. of 5th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, Ed., The Inst. of Materials, 1993, p 245–254Google Scholar
  205. 205.
    H. Harada, T. Yamagata, T. Yokokawa, K. Ohno, and M. Yamazaki, Computer Analysis on Microstructure and Property of Nickel-Base Single Crystal Superalloys,Proc. of 5th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, Ed., The Inst. of Materials, 1993, p 255–264Google Scholar

Copyright information

© ASM International 1995

Authors and Affiliations

  • L. Shi
    • 1
  • D. O. Northwood
    • 2
  1. 1.Mechanical Engineering Dept.University of WaterlooWaterlooCanada
  2. 2.Engineering Materials Group, Mechanical Engineering DepartmentUniversity of WindsorOntarioCanada

Personalised recommendations