Global convergence of the fletcher-reeves algorithm with inexact linesearch

  • Liu Guanghui
  • Han Jiye
  • Yin Hongxia


In this paper, we investigate the convergence properties of the Fletcher-Reeves algorithm. Under conditions weaker than those in a paper of M. Al-Baali, we get the global convergence of the Fletcher-Reeves algorithm with a low-accuracy inexact linesearch.

1991 MR Subject Classification



Fletcher-Reeves algorithm inexact linesearch global convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Al-Baali, M., Descent property and global convergence of the Fletcher-Reeves method with inexact linesearch,IMA Numer. Anal.,5 (1985), 121–124.MATHCrossRefGoogle Scholar
  2. [2]
    Cloutier, J.R. and Wilson, R.F., Periodically preconditioned congate-restoration algorithms,J. Optim. theory Appl.,70 (1991), 79–95.MATHCrossRefGoogle Scholar
  3. [3]
    Cohan, A., Rate of convergence of several conjugate gradient algorithms,SIAM J. Numer. Anal.,9 (1972), 248–259.CrossRefGoogle Scholar
  4. [4]
    Dixon, L.C.W., Duksbury, P.G. and Singh, P., A new three-term conjugate gradient method, Technical Report No. 130, Numerical Optimization Centre, Hatfield Polytechnic, Hatfield, Hertford Shire, England, 1985.Google Scholar
  5. [5]
    Fletcher, R. and Reeves, C.M., Function minimization by conjugate gradients,Comput. J.,7 (1964), 149–154.MATHCrossRefGoogle Scholar
  6. [6]
    Hayami, K. and Harada, N.,On the effectiveness of the diagonally scaled conjugate gradient algorithm on vector computers, Trans. Inform. Process. Soc. Japan,30 (1989), 1164–1375.Google Scholar
  7. [7]
    Liu, Y. and Storey, C., Eficient generalized gradient algorithm I: Theory,J. Optim. Theory Appl.,69 (1991), 129–137.MATHCrossRefGoogle Scholar
  8. [8]
    Nazareth, J.L., Conjugate gradient methods less dependent on conjugacy,SIAM Rev.,28 (1986), 501–511.MATHCrossRefGoogle Scholar
  9. [9]
    Powell, M.J.D., Nonconvex minimization calculations and the conjugate gradient method, in: Numerical Analysis (Griffiths, D.F., ed.), Dundee, 1983, pp. 122–141.Google Scholar
  10. [10]
    Shanno, D.F., Global convergent conjugate gradient algorithms,Math. Programming,33 (1985), 61–67MATHCrossRefGoogle Scholar
  11. [11]
    Touati-Ahmed, D. and Storey, C., Efficient hybird conjugate gradient techniques,J. Optim. Theory Appl.,64 (1990), 379–397.MATHCrossRefGoogle Scholar

Copyright information

© Editorial Committee of Applied Mathematics-A Journal of Chinese Universities 1995

Authors and Affiliations

  • Liu Guanghui
    • 1
  • Han Jiye
    • 2
  • Yin Hongxia
    • 3
  1. 1.Institute of Applied MathematicsBeijing
  2. 2.Institute of Applied MathematicsBeijing
  3. 3.Department of Mathematics and Applied PhysicsBeijing University of Aeronautics and AstronomicsBeijing

Personalised recommendations