Metallurgical and Materials Transactions B

, Volume 25, Issue 3, pp 351–358 | Cite as

A mathematical model of ionic transport in a porous diaphragm of a chrome-alum cell

  • Roberto Vidal
  • Paul Duby
  • Alan C. West


A model of the homogeneous chemistry and transport processes within the separator of a chrome-alum electrowinning cell is introduced, discussed, and compared to experiment. The influences of diffusion, electromigration, and convection are included; it is found that convection was the dominant mode of transport for the experimental conditions. Simulation results explain experimental observations concerning an apparent disappearance of dichromate ions produced at the cell anode. The relation between potential drop across the diaphragm and the current and fluid flow is also illustrated. The model is used to recommend future experimental and theoretical work.


Material Transaction Current Efficiency Dichromate Potential Drop Cathodic Current Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Rosenbaum, R.R. Lloyd, and C.C. Merrill:Tech. Report R.I. 5322, U.S. Bureau of Mines, 1957.Google Scholar
  2. 2.
    R.R. Lloyd, J.B. Rosenbaum, V.E. Homme, and L.P. Davis:Trans. Electrochem. Soc., 1950, vol. 97, p. 227.Google Scholar
  3. 3.
    R.R. Lloyd, J.B. Rosenbaum, V.E. Homme, L.P. Davis, and C.C. Merrill:J. Electrochem. Soc, 1948, vol. 94, p. 122.Google Scholar
  4. 4.
    C. Arslan: Ph.D. Thesis, Columbia University, New York, NY, 1991.Google Scholar
  5. 5.
    R. Vidal: M.S. Thesis, Columbia University, New York, NY, 1992.Google Scholar
  6. 6.
    A.T. Kuhn:Industrial Electrochemical Processes, Elsevier, New York, NY, 1973, p. 188.Google Scholar
  7. 7.
    R. Vidal, C. Arslan, and P. Duby: inEPD Congress 1994, G.W. Warren, ed. TMS, Warrendale, PA, 1994, p. 329.Google Scholar
  8. 8.
    M. Pourbaix:Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed., NACE, Houston, TX, 1974, p. 262.Google Scholar
  9. 9.
    T.F. Young, L.F. Maranville, and H.M. Smith: inThe Structure of Electrolytic Solutions, W.J. Hamer, ed., John Wiley, New York, NY, 1959, p. 35.Google Scholar
  10. 10.
    J. Newman:Electrochemical Systems, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1991, chs. 11 and 22 and Appendix A.Google Scholar
  11. 11.
    J. Newman and W. Tiedemann:AIChE J., 1975, vol. 21, p. 25.CrossRefGoogle Scholar
  12. 12.
    J.S. Newman and W. Tiedemann:Adv. Electrochem. Electrochem. Eng., 1978, vol. 11, p. 353.Google Scholar
  13. 13.
    J. Newman:Ind. Eng. Chem. Fundam., 1968, vol. 7, p. 514.CrossRefGoogle Scholar
  14. 14.
    V.G. Levich:Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ, 1962, ch. 2.Google Scholar
  15. 15.
    R. Smith and A.E. Martell:Critical Stability Constants, Plenum Press, New York, NY, 1974, vols. 5–6.Google Scholar
  16. 16.
    J.P. Hoare:J. Electrochem. Soc, 1979, vol. 126, p. 190.CrossRefGoogle Scholar
  17. 17.
    T. Radnai and C. Dorgai:Electrochim. Acta, 1992, vol. 37, p. 1239.CrossRefGoogle Scholar
  18. 18.
    F.A. Cotton and G. Wilkinson:Advanced Inorganic Chemistry. A Comprehensive Text, 4th ed., John Wiley and Sons, New York, NY, 1980, p. 727.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1994

Authors and Affiliations

  • Roberto Vidal
    • 1
  • Paul Duby
    • 1
  • Alan C. West
    • 1
  1. 1.Department of Chemical Engineering, Materials Science, and Mining EngineeringColumbia UniversityNew York

Personalised recommendations