Journal of the American Oil Chemists’ Society

, Volume 56, Issue 8, pp 736–741

Oilseed phytates: Nutritional implications

  • J. W. Erdman
Symposium Minor Constituents in Oilseed Protein Products

Abstract

The protein quantity and quality, caloric value, and overall nutrient content of oilseeds are quite good. However, oilseeds are high in phytic acid and contain fiber and perhaps other binding agents which reduce mineral bioavailability from the seeds. Phytic acid, the hexaphosphate of myoinositol, functions as the chief storage form of phosphate and inositol in mature seeds. On a dry basis, whole oilseeds contain about 1.5% while some oilseed protein concentrates can contain over 7.0% of the compound. Phytic acid is a strong chelating agent that can bind mono- and divalent metal ions to form the complex phytate. Published results from numerous animal feeding trials suggest poor bioavailability of minerals such as zinc, calcium, magnesium, phosphorus and possibly iron from diets containing high phytate foods. Recent studies involving the feeding of soy products to rats suggest that zinc is the mineral of most concern as its bioavailability from some soy products is quite low. Prediction of mineral bioavailability from phytate-containing foods is complicated by the complex interactions between the minerals and phytic acid contained in the foods, intestinal and the meal phytase activities, previous food processing conditions (especially pH), digestibility of the foods as well as the physiological status of the consumer of the foods. Very little is known about the chemistry of such interactions. Therefore, most of the emphasis in controlling or reducing mineral binding in oilseed products has been placed upon development of methodology for phytate removal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Dell, B.L., Am. J. Clin. Nutr. 22:1315 (1969).Google Scholar
  2. 2.
    O’Dell, B.L., and J.E. Savage, Proc. Soc. Exp. Biol. Med. 103:304(1960).Google Scholar
  3. 3.
    Likuski, H.J.A., and R.M. Forbes, J. Nutr. 85:230 (1965).Google Scholar
  4. 4.
    Davies, N.T., and R. Nightingale, Ibid. 34:243 (1975).Google Scholar
  5. 5.
    Reinhold, J.G., F. Ismail-Beigi, and B. Faraji, Nutr. Rep. Intern. 12:75 (1975).Google Scholar
  6. 6.
    Ismail-Beigi, F., B. Faraji, and J.G. Reinhold, Am. J. Clin. Nutr. 30:1721 (1977).Google Scholar
  7. 7.
    Barre, R., and N. Van Huot, Bull. Soc. Chim. Biol. 47:1419 (1965).Google Scholar
  8. 8.
    Cosgrove, D.J., Rev. Pure Appl. Chem. 16:209 (1966).Google Scholar
  9. 9.
    Oberleas, D., and B.F. Harland, in “Zinc Metabolism: Current Aspects in Health and Disease,” Edited by GJ. Brewer and A.S. Prasad, Alan R. Liss, Inc., NY, 1977, p. 11.Google Scholar
  10. 10.
    Oberlease, D., in “Toxicants Occurring Naturally in Foods,” NAS Washington, DC, 1973, p. 363.Google Scholar
  11. 11.
    Erdman, J.W., Jr., and R.M. Forbes, Food Prod. Dev. 11(10):46 (1977).Google Scholar
  12. 12.
    Martinez, W.H., in “Evaluation of Proteins for Humans,” Edited by C.E. Bodwell, AVI Publishing Co., Inc., Westport, CT, 1977, p. 309.Google Scholar
  13. 13.
    Liener, I.E., in “Soybeans: Chemistry and Technology,” Edited by A.K. Smith and S.J. Circle, AVI Publishing Co., Inc., Westport, CT., 1972, p. 203.Google Scholar
  14. 14.
    Anderson, R.J., J. Biol. Chem. 17:141 (1914).Google Scholar
  15. 15.
    Neuberg, C., Biochem. Z. 9:557 (1908).Google Scholar
  16. 16.
    Hoff-Jørgensen, E., Kgl. Danske Videnskab., Selskab Mat. Nat. Medd. 21:7 (1944).Google Scholar
  17. 17.
    Brown, E.C., M.L. Heit, and D.E. Ryan, Can. J. Chem. 39:1290 (1961).CrossRefGoogle Scholar
  18. 18.
    Blank, G.E., J. Pletcher, and M. Sax, Biochem. Biophys. Res. Comm. 44:319 (1971).CrossRefGoogle Scholar
  19. 19.
    Johnson, L.F., and M.E. Tate, Can. J. Chem. 47:63 (1969).CrossRefGoogle Scholar
  20. 20.
    Costello, A.J.R., T. Glonek, and T.C. Myers, Carb. Res. 46:159 (1976).CrossRefGoogle Scholar
  21. 21.
    IUPAC-IUB, Eur. J. Biochem. 5:1 (1968).CrossRefGoogle Scholar
  22. 22.
    Weingartner, K.E., and J.W. Erdman, Jr., Illinois Research. 20(2):4 (1978).Google Scholar
  23. 23.
    Asada, K., K. Tanaka, and Z. Kasai, Ann. N.Y. Acad. Sci. 165(2):801 (1969).Google Scholar
  24. 24.
    Chen, L.H., and S.H. Pan., Nutr. Rep. Int. 16:125 (1977).Google Scholar
  25. 25.
    Morton, R.K., and J.K. Raison, Nature (London). 200:429 (1963).CrossRefGoogle Scholar
  26. 26.
    Biswas, S., and B.B. Biswas, Biochim. Biophys. Acta. 108:710 (1965).Google Scholar
  27. 27.
    O’Dell, B.L., A.R. de Boland, and S.R. Koirtyohann, J. Agric. Food Chem. 20(3):718 (1972).CrossRefGoogle Scholar
  28. 28.
    Saio, K., D. Gallant, and L. Petit, Cereal Chem. 54:1171 (1977).Google Scholar
  29. 29.
    Lui, N.S.T., and A.M. Altschul, Arch. Biochem. Biophys. 121:678 (1967).CrossRefGoogle Scholar
  30. 30.
    Tombs, M.P., Plant Physiol., 42:797 (1967).CrossRefGoogle Scholar
  31. 31.
    Dieckert, J.W., J.E. Snowden, Jr., A.T. Moore, D.C. Heinzelman, and A.M. Altschul, J. Food Sc., 27:321 (1962).CrossRefGoogle Scholar
  32. 32.
    McLaughlin, J.M., J.D. Jones, B.G. Shah, and J.L. Beare-Rogers, Nutr. Rep. Int. 11:327 (1975).Google Scholar
  33. 33.
    Pomeranz, Y., Cereal Chem. 50:504 (1973).Google Scholar
  34. 34.
    O’Dell, B.L., and A.R. de Boland, J., Agric. Food Chem. 24:804 (1976).CrossRefGoogle Scholar
  35. 35.
    de Boland, A.R., G.B. Garner, and B.L. O’Dell, Ibid. 23:1186 (1975).CrossRefGoogle Scholar
  36. 36.
    Maddaiah, V.T., A.A. Kurnick, and B.L. Reid, Proc. Soc. Exp. Biol. Med. 115:391 (1964).Google Scholar
  37. 37.
    Vohra, P.G., A. Gray, and P.S. Kratzer, Ibid. 120:447 (1965).Google Scholar
  38. 38.
    Rackis, J.J., J.E. McGhee, D.H. Honig, and A.N. Booth, JAOCS 52:249A (1975).CrossRefGoogle Scholar
  39. 39.
    Rackis, J.J., and R.L. Anderson, Food Prod. Dev. 11(10):38 (1977).Google Scholar
  40. 40.
    Ellis, R., and E.R. Morris, Fed. Proc. 37:584 Abst No. 1959 (1978).Google Scholar
  41. 41.
    Mellanby, E., Spec. Dept. Ser. Med. Res. Council, London No. 93 (1925).Google Scholar
  42. 42.
    Mellanby, E., J. Physiol. 109:488 (1949).Google Scholar
  43. 43.
    Walker, A.R.P., Lancet 261:244 (1951).CrossRefGoogle Scholar
  44. 44.
    Walker, A.R.P., W.F. Fox, and J.T. Irving, Biochem. J. 42:452 (1948).Google Scholar
  45. 45.
    Reinhold, J.G., A. Lahingarzadeh, K. Nasia, and H. Hedayati, Lancet 10:283 (1973).CrossRefGoogle Scholar
  46. 46.
    Erdman, J.W., Jr., K.E. Weingartner, H.M. Parker, and R.M. Forbes, Fed. Proc. 37:891 Abst No. 35 63 (197 8).Google Scholar
  47. 47.
    Momcilovic, B., B. Belonje, A. Giroux, and B.G. Shah., Nutr. Rep. Int. 12:197 (1975).Google Scholar
  48. 48.
    Forbes, R.M., Fed. Proc. 19:643 (1960).Google Scholar
  49. 49.
    Roberts, A.H., and J. Yudkin, Nature. 185:823 (1960).CrossRefGoogle Scholar
  50. 50.
    Forbes, R.M., J. Nutr. 83:225 (1964).Google Scholar
  51. 51.
    Lo, G.S., D.W. Collins, F.H. Steinke, and D.T. Hopkins, Fed. Proc. 37(3):667 Abst No. 2386 (1978).Google Scholar
  52. 52.
    McCance, R.A., and E.M. Widdowson, Lancet 2:126 (1943).CrossRefGoogle Scholar
  53. 53.
    Nakamura, F.I., H.H. Mitchell, J. Nutr. 25:39 (1943).Google Scholar
  54. 54.
    Sathe, U., and K. Krishnamurthy, Indian J. Med. Res. 41:453 (1953).Google Scholar
  55. 55.
    Davies, N.T., and R. Nightingale, Brit. J. Nutr. 34:243 (1975).Google Scholar
  56. 56.
    Cowan, J.W., M. Esfahani, J.P. Salji, and S.A. Azzain, J. Nutr. 90:423 (1966).Google Scholar
  57. 57.
    Welch, R.M., and D.R. Van Campen, Ibid. 105:253 (1975).Google Scholar
  58. 58.
    Monsen, E.R., Ibid. 104:1490 (1974).Google Scholar
  59. 59.
    Steinke, F.H., and D.T. Hopkins, Ibid. 108:481 (1978).Google Scholar
  60. 60.
    Forbes, R.M., and M. Yohe, Ibid. 70:53 (1960).Google Scholar
  61. 61.
    Forbes, R.M., and H.M. Parker, Nutr. Rep. Int. 15:681 (1977).Google Scholar
  62. 62.
    Momcilovic, B., and B.G. Shah, Ibid. 13:135 (1976).Google Scholar
  63. 63.
    Momcilovic, B., and B.G. Shah, Ibid. 14:717 (1976).Google Scholar
  64. 64.
    Weingartner, K.E., W. Eadman, H.M. Parker, and R.M. Forbes, Ibid. 19:223 (1979).Google Scholar
  65. 65.
    Lease, J.G., J. Nutr. 93:523 (1967).Google Scholar
  66. 66.
    Cousins, R.J., Nutr. Reus. 37:97 (1979).Google Scholar
  67. 67.
    Nelson, T.S., Poultry Sci. 47:1985 (1967).Google Scholar
  68. 68.
    Klevay, L.M., Nutr. Rep. Int. 15:587 (1977).Google Scholar
  69. 69.
    Ranhotra, G.S., R.J. Loewe, and L.V. Puyat, J. Food Sci. 39:1023 (1974).CrossRefGoogle Scholar
  70. 70.
    Okubo, K., A.B. Waldrop, G.A. Iacobucci, and D.V. Myers, Cereal Chem. 52:263 (1975).Google Scholar
  71. 71.
    Churella, H.R., and V. Vivian, Fed. Proc, 35:744 Abst No.Google Scholar
  72. 72.
    Ford, J.R., G.C. Mustakas, and R.D. Schmutz, JAOCS 55:371 (1978).Google Scholar
  73. 73.
    Hartman, G.H., Jr., AOCS 69th Annual Meeting, Paper No. 99 (1978).Google Scholar
  74. 74.
    Fontaine, T.D., W.A. Pons, Jr., and G.W. Irving, Jr., J. Biol. Chem. 164:487 (1946).Google Scholar
  75. 75.
    Saio, K., E. Koyama, and T. Watanabe, Agric. Biol. Chem. (Tokyo) 32:448 (1968).Google Scholar
  76. 76.
    Lease, J.G., Poultry Sci. 45:237 (1966).Google Scholar
  77. 77.
    Wozenski, J., and M. Woodburn, Cereal Chem. 52:665 (1975).Google Scholar

Copyright information

© American Oil Chemists’ Society 1979

Authors and Affiliations

  • J. W. Erdman
    • 1
  1. 1.567 Bevier Hall, Department of Food ScienceUniversity of IllinoisUrbana

Personalised recommendations