Advertisement

Journal of Electronic Materials

, Volume 22, Issue 5, pp 567–572 | Cite as

A study of the evolution process of antiphase boundaries in GaAs on Si

  • S. I. Molina
  • G. Aragón
  • R. García
  • Y. González
  • L. González
  • F. Briones
Regular Issue Paper

Abstract

A study by high resolution electron microscopy and conventional transmission electron microscopy of the process of closure of antiphase boundaries (APB) in atomic layer molecular beam epitaxy (ALMBE) grown GaAs on silicon is reported. A parallelepipedical shape, closed at the top by another boundary with a semispheric shape, is proposed for the during growth suppressed APBs in GaAs epilayers. Antiphase boundaries are mostly located in {100} plans. Sixty degree dislocations are involved in the process of bending of APBs from {110} to {11n} planes; this bending is the initial step which must take place to get a single domain by interaction of two APBs. The proposed shape for closed APBs is in good agreement with the quasi two-dimensional growth observed for GaAs grown on silicon by ALMBE.

Key words

ALMBE antiphase boundaries GaAs on silicon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.P. Gowers,Appl. Phys. A34, 231 (1984).Google Scholar
  2. 2.
    J.B. Posthill, J.C.L. Tarn, K. Das, T.P. Humphreys and N.R. Parikh,Appl. Phys. Lett. 53, 1987 (1989).Google Scholar
  3. 3.
    P.M. Petroff,J. Vac. Sci. Technol. B4, 874 (1986).Google Scholar
  4. 4.
    H. Noge, H. Kano, T. Kato, M. Hashimoto and I. Igarashi,J. Cryst. Growth 83, 431 (1987).CrossRefGoogle Scholar
  5. 5.
    H. Noge, H. Kano, M. Hashimoto and I. Igarashi,J. Appl. Phys. 64, 2246 (1988).CrossRefGoogle Scholar
  6. 6.
    J. Varrio, H. Asonen, J. Lammasniemi, K. Rakemus and H. Pessa,Appl. Phys. Lett. 55, 1987 (1989).CrossRefGoogle Scholar
  7. 7.
    S. Strite, D. Biswas, N.S. Kumar, M. Fradkin and H. MorkoÇ,Appl. Phys. Lett. 56, 244 (1990).CrossRefGoogle Scholar
  8. 8.
    K. Adomi, S. Strite and H. MorkoÇ,Appl. Phys. Lett. 56, 469 (1990).CrossRefGoogle Scholar
  9. 9.
    O. Ueda, T. Soga, T. Jimbo and M. Umeno,Appl.Phys. Lett. 55, 445(1989).CrossRefGoogle Scholar
  10. 10.
    Z. Liliental-Weber, M.A. O’Keefe and J. Washburn,Ultmmicroscopy 30, 20 (1989).CrossRefGoogle Scholar
  11. 11.
    S. McKernan and C.B. Carter,Proc. Xllth Int. Congress for Electron Microscopy, 1990, San Francisco, CA USA, vol. 2, p. 500.Google Scholar
  12. 12.
    F. Briones, L. Gonzalez and A. Ruiz,Appl. Phys. A49, 729 (1989).Google Scholar
  13. 13.
    Y. Gonzalez, L. Gonzalez, F. Briones, A. Vilá, A. Cornet and J.R. Morante,J.Cryst. Growth (1992), in press.Google Scholar
  14. 14.
    Y. Gonzalez, L. Gonzalez and F. Briones,J. Cryst. Growth 111, 120 (1991).CrossRefGoogle Scholar
  15. 15.
    Y. Gonzalez, L. Gonzalez and F. Briones,Jpn. J. Appl. Phys. 30 (1991), in press.Google Scholar
  16. 16.
    J.W. Edington,Interpretation of Transmission Electron Micrographs, vol. 3, Philips Technical Library, 1975.Google Scholar
  17. 17.
    J.H. Mazur,Proc. Xllth lnt. Congress for Electron Microscopy, 1990, San Francisco, CA, USA, vol. 1, p.46.Google Scholar
  18. 18.
    A. Vila, A. Cornet, J.R. Morante, Y. Gonzalez, L. González and F. Briones,Mater. Lett. 11, 155 (1991).CrossRefGoogle Scholar

Copyright information

© The Mineral,Metal & Materials Society,Inc. 1993

Authors and Affiliations

  • S. I. Molina
    • 1
  • G. Aragón
    • 1
  • R. García
    • 1
  • Y. González
    • 2
  • L. González
    • 2
  • F. Briones
    • 2
  1. 1.Departamento de Química InorgánicaUniversidad de CadizPuerto Real (Cadiz)Spain
  2. 2.Centro Nacional de MicroelectrönicaCSICMadridSpain

Personalised recommendations