Skip to main content
Log in

Flow stress, subgrain size, and subgrain stability at elevated temperature

  • Symposium on Mechanical-Thermal Processing and Dislocation Substructure Strengthening
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Well defined subgrain boundaries dominate the microstructural changes occurring during plastic flow of polycrystalline metals at elevated temperature. The quantitative influence of subgrain size on elevated-temperature plastic flow is considered. Based on the results of tests under constant-stress and constant-structure conditions, an equation is developed which predicts the creep rate as a function of subgrain size, stress, diffusion coefficient, and elastic modulus. In general, the subgrain size is a unique function of the current modulus-compensated flow stress, but if fine subgrains can be introduced and stabilized, large increases in creep strength may result. The applicability of the phenomenological relation developed to the behavior of dispersion-strengthened materials (where the second-phase particles may predetermine the effective subgrain size) is discussed. When subgrain effects are included, it is shown that the creep rate is less dependent on stacking fault energy than has been previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Bird, A. K. Mukherjee, and J. E. Dorn:Int. Conf. Quantitative Relation Between Properties and Microstructure, p. 255, Haifa, Israel, 1969.

  2. J. Weertman:Trans. ASM, 1968, vol. 61, p. 681.

    CAS  Google Scholar 

  3. O. D. Sherby and P. M. Burke:Progr. Mater. Sci., 1968, vol. 13, p. 325.

    Article  Google Scholar 

  4. S. L. Robinson and O. D. Sherby:Acta Met., 1969, vol. 17, p. 109.

    Article  CAS  Google Scholar 

  5. O. D. Sherby and C. M. Young:Rate Processes in Plastic Deformation of Materials, p. 497. ASM Metals Park, Ohio, 1975.

    Google Scholar 

  6. H. J. Frost and M. E. Ashby:Rate Processes in Plastic Deformation of Materials, p. 70, ASM Metals Park, Ohio, 1975.

    Google Scholar 

  7. S. L. Robinson, O. D. Sherby, and P. E. Amstrong:J. Nucl. Mater., 1972, vol. 46, p. 293.

    Article  Google Scholar 

  8. R. R. Vandervoort:Trans. TMS-AIME, 1968, vol. 242, p. 345.

    CAS  Google Scholar 

  9. G. R. Edwards, T. R. McNelley, and O. D. Sherby:Scr. Met., 1974, vol. 8, p. 475.

    Article  CAS  Google Scholar 

  10. I. S. Servi and N. J. Grant:Trans. AIME, 1951, vol. 191, p. 909.

    Google Scholar 

  11. M. E. Fine:Rev. Sci. Instrum., 1957, vol. 28, p. 643.

    Article  CAS  Google Scholar 

  12. P. M. Burke, W. R. Cannon, and O. D. Sherby: Submitted for publication 1976; P. M. Burke: Ph. D. Thesis, Stanford University, Stanford, Calif., 1968.

  13. Shu-en-Hsu: Ph.D. Thesis, Stanford University, Stanford, Calif., 1972.

  14. F. Garofalo:Trans. TMS-AIME, 1963, vol. 227, p. 351.

    Google Scholar 

  15. J. Weertman:J. Appl. Phys., 1955, vol. 26, p. 1213.

    Article  CAS  Google Scholar 

  16. C. H. M. Jenkins and G. A. Mellor:J. Iron Steel Inst., 1935, vol. 132, p. 129.

    Google Scholar 

  17. W. A. Wood and G. R. Wilms:J. Inst. Metals, 1948–49, vol. 75, p. 613.

    Google Scholar 

  18. W. A. Wood and W. A. Rachinger:J. Inst. Metals, 1949–50, vol. 76, p. 237.

    CAS  Google Scholar 

  19. Discussion of paper by Wood and Wilms:J. Inst. Metals, 1948–49, vol. 75, p. 1125.

    Google Scholar 

  20. P. W. Chen, C. T. Young, and J. L. Lytton: inRate Processes in Plastic Deformation of Materials p. 605. ASM, Metals Park, Ohio, 1975.

    Google Scholar 

  21. I. S. Servi and N. J. Grant:Trans. AIME, 1951, vol. 191, p. 917.

    Google Scholar 

  22. J. L. Lytton, C. R. Barrett, and O. D. Sherby:Trans. TMS-AIME, 1965, vol. 233, p. 1399.

    CAS  Google Scholar 

  23. C. M. Young and O. D. Sherby:J. Iron Steel Inst., 1973, vol. 211, p. 640.

    CAS  Google Scholar 

  24. J. J. Jonas, C. M. Sellars, and W. J. Mcg. Tegart:Met. Rev., 1969, vol. 14, p. 1.

    Google Scholar 

  25. H. J. McQueen and J. E. Hockett:Met. Trans., 1970, vol. 1, p. 2997.

    CAS  Google Scholar 

  26. A. Korbel and K. Swiatkowski:Metal Sci. J., 1972, vol. 6, p. 60.

    Article  CAS  Google Scholar 

  27. A. M. Gervais, J. T. Norton, and N. J. Grant:Trans. AIME, 1953, vol. 197, p. 1166 (stress drop test described on p 1173).

    Google Scholar 

  28. C. M. Young, S. L. Robinson, and O. D. Sherby:Acta Met., 1975, vol. 23, p. 633.

    Article  CAS  Google Scholar 

  29. R. Horiuchi and M. Otsuka:Trans. Jap. Inst. Metals, 1972, vol. 13, p. 284.

    Google Scholar 

  30. C. N. Ahlquist and W. D. Nix:Scr. Met., 1969, vol. 3, p. 679.

    Article  Google Scholar 

  31. C. N. Ahlquist and W. D. Nix:Acta Met., 1971, vol. 19, p. 373.

    Article  Google Scholar 

  32. V. Pontikis and Poirier:Phil. Mag., 1975, vol. 32, p. 577.

    CAS  Google Scholar 

  33. J. D. Parker and B. Wilshire:Phil. Mag., 1976, vol. 34, p. 485.

    CAS  Google Scholar 

  34. A. A. Solomon and W. D. Nix:Acta Met., 1970, vol. 18, p. 863.

    Article  CAS  Google Scholar 

  35. S. K. Mitra and D. McLean:Metal Sci. J., 1967, vol. 1, p. 192.

    CAS  Google Scholar 

  36. O. D. Sherby, R. Frenkel, J. Nadeau, and J. E. Dorn:Trans. TMS-AIME, 1954, vol. 200, p. 275.

    Google Scholar 

  37. L. Raymond and J. E. Dorn:Trans. TMS-AIME, 1964, vol. 230, p. 560.

    CAS  Google Scholar 

  38. S. L. Robinson, C. M. Young, and O. D. Sherby:J. Mater. Sci., 1974, vol. 9, p. 341.

    Article  CAS  Google Scholar 

  39. T. S. Lundy and J. F. Murdock:J. Appl. Phys., 1962, vol. 33, p. 1971.

    Article  Google Scholar 

  40. S. L. Robinson, P. M. Burke, and O. D. Sherby:Phil. Mag., 1974, vol. 29, p. 423.

    CAS  Google Scholar 

  41. R. H. Klundt, Y. Monma, and O. D. Sherby: Third Quarterly Progress Report, April 1, 1975–June 30, 1975, USERDA, Contract AT(04-3)-326-PA#38 Stanford University, Stanford, Calif.

  42. H. Oikawa, I. Iikubo, S. Karashima, and T. Watanable:Proc. Inter. Conf. on Science and Technology of Steels p. 1311, Iron and Steel Inst, Japan, 1971.

    Google Scholar 

  43. N. J. Grant:The Strengthening of Metals, D. Peckner, ed., p. 163, Reinhold, 1964.

  44. B. A. Wilcox and A. H. Clauer:Acta Met., 1972, vol. 20, p. 743.

    Article  CAS  Google Scholar 

  45. J. H. Lin and O. D. Sherby: 2nd Annual Report to NASA, Lewis Research Center, Cleveland, Ohio, December, 1975.

    Google Scholar 

  46. C. R. Barrett and O. D. Sherby:Trans. TMS-AIME, 1965, vol. 233, p. 1116.

    CAS  Google Scholar 

  47. B. A. Wilcox and A. H. Clauer:Metal Sci. J., 1969, vol. 3, p. 26.

    CAS  Google Scholar 

  48. W. J. Evans and B. Wilshire:Met. Trans., 1970, vol. 1, p. 2133.

    Article  CAS  Google Scholar 

  49. P. L. Threadgill and B. Wilshire:Metal Sci. J., 1974, vol. 8, p. 117.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at a symposium on “Mechanical-Thermal Processing and Dislocation Substructure Strengthening,” held at the Annual Meeting in Las Vegas, Nevada, on February 23, 1976, under the sponsorship of the TMS/IMD Heat Treating Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherby, O.D., Klundt, R.H. & Miller, A.K. Flow stress, subgrain size, and subgrain stability at elevated temperature. Metall Trans A 8, 843–850 (1977). https://doi.org/10.1007/BF02661565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661565

Keywords

Navigation