Advertisement

Metallurgical and Materials Transactions B

, Volume 26, Issue 2, pp 209–218 | Cite as

Kinetics of pyrite oxidation in sodium carbonate solutions

  • V. S. T. Ciminelli
  • K. Osseo-Asare
Hydrometallurgy

Abstract

The kinetics of pyrite oxidation in sodium carbonate solutions were investigated in a stirred vessel, under temperatures ranging from 50 °C to 85 °C, oxygen partial pressures from 0 to 1 atm, particle size fractions from −150 + 106 to −38 + 10 µm (−100 + 150 Mesh to −400 Mesh + 10 µm) and pH values of up to 12.5. The rate of the oxidation reaction is described by the following expression:−dN/dt = SbkpO 2 0.5 [OH]0.1

whereN represents moles of pyrite,S is the surface area of the solid particles,b is a stoichiometric factor,k is an apparent rate constant, pO```2`` is the oxygen partial pressure, and [OH] is the hydroxyl ion concentration. The experimental data were fitted by a stochastic model for chemically controlled reactions, represented by the following fractional conversion(X) vs time (t) equation: (1−X)−2/3−1 =k STt

The assumption behind this model,i.e., surface heterogeneity leading to preferential dissolution, is supported by the micrographs of reacted pyrite particles, showing pits created by localized dissolution beneath an oxide layer. In addition to the surface texture, the magnitude of the activation energy (60.9 kJ/mol or 14.6 ± 2.7 kcal/mol), the independence of rate on the stirring speed, the inverse relationship between the rate constant and the initial particle diameter, and the fractional reaction orders are also in agreement with a mechanism controlled by chemical reaction.

Keywords

Pyrite Material Transaction Oxygen Partial Pressure Fractional Order FeS2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. McKibben and H.L. Barnes:Geochim. Cosmochim. Acta, 1986, vol. 5, pp. 1509–20.CrossRefGoogle Scholar
  2. 2.
    M.B. Goldhaber:Am. J. Sci., 1983, vol. 238, pp. 193–217.CrossRefGoogle Scholar
  3. 3.
    W.J. Guay: inGold and Silver Leaching, Recovery and Economics, W.J. Schlitt, etal., eds., AIME, New York, NY, 1981, pp. 17–22.Google Scholar
  4. 4.
    A.V. Souza and V.S.T. Ciminelli: inGold Extraction: Fundamentals, Practice and Environment, V.S.T. Ciminelli and M.J.G. Salum, eds., ABTM, Belo Horizonte, Brazil, 1992, pp. 177–96.Google Scholar
  5. 5.
    J.B. Hiskey and W.J. Schlitt: inInterfacing Technologies in Solution Mining, W.J. Schlitt and J.B. Hiskey, eds., AIME, New York, NY, 1982, pp. 55–74.Google Scholar
  6. 6.
    F.A. Forward and J. Halpern:Journal of Metals, Trans. AIME, Warrendale, PA, 1955, pp. 463–66.Google Scholar
  7. 7.
    I.H. Warren:Aust. J. Appl. Sci., 1956, vol. 7, pp. 346–58.Google Scholar
  8. 8.
    D. Royston, P.A. Spencer, and D.A. Winborne: inExtractive Metallurgy Symposium, The Aust. Inst. of Min. Metall., Victoria, Australia, 1984, pp. 61–67.Google Scholar
  9. 9.
    K.C. Chuang, M.C. Chen, R.T. Greer, R. Markuszewski, Y. Sun, and T.D. Wheelock:Chem. Eng. Commun., 1980, vol. 7, pp. 79–94.CrossRefGoogle Scholar
  10. 10.
    R.M.G.S. Berezowsky, M.J. Collins, D.G.E. Kerfoot, and N. Torres:J. Met., 1991, vol. 43 (2), pp. 79–94.Google Scholar
  11. 11.
    T.D. Wheelock:Chem. Eng. Commun., 1980, vol. 12, pp. 137–59.CrossRefGoogle Scholar
  12. 12.
    R.T. Lowson:Chem. Rev., 1982, vol. 82, pp. 461–97.CrossRefGoogle Scholar
  13. 13.
    J.F. Stenhouse and W.M. Armstrong:Can Min. Metall. Bull., 1952, Jan., pp. 49–53.Google Scholar
  14. 14.
    H. Fisher:Min. Sci. Press, 1916, May 26, pp. 743–45.Google Scholar
  15. 15.
    A.R. Burkin and A.M. Edwards:Proc. 6th Int. Cong. Mineral Processing, Cannes, 1963, pp. 159–69.Google Scholar
  16. 16.
    E.E. Smith and K.S. Shumate: U.S. Dept. Interior, Fed. Water Quality Adm., Water Pollution Control Research Series, No. 14010 FPS02/70, 1970.Google Scholar
  17. 17.
    V.H. Gottschalk and H.A. Buehler:Econ. Geol., 1912, vol. 7, pp. 15–34.Google Scholar
  18. 18.
    D.R. McKay and J. Halpern:Trans. TMS-AIME, 1958, June, pp. 301–08.Google Scholar
  19. 19.
    C.T. Mathews and R.G. Robins:Aust. Chem. Eng., 1974, Nov./Dec., pp. 19–24.Google Scholar
  20. 20.
    L.K. Bailey and E. Peters:Can. Metall. Q., 1976, vol. 15, pp. 333–44.Google Scholar
  21. 21.
    G.M. Kostina and A.S. Chernyak:Zh. Prikl. Khim., 1976, vol. 49, pp. 1534–39.Google Scholar
  22. 22.
    G.M. Kostina and A.S. Chernyak:Zh. Prikl. Khim., 1979, vol. 52, pp. 766–72.Google Scholar
  23. 23.
    M. Sato:Econ. Geol., 1960, vol. 55, pp. 1202–31.CrossRefGoogle Scholar
  24. 24.
    CO. Moses, D.K. Nordstrom, J.S. Herman, and A.L. Mills:Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 1561–71.CrossRefGoogle Scholar
  25. 25.
    CO. Moses and J.S. Herman:Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 471–82.CrossRefGoogle Scholar
  26. 26.
    P.C. Singer and W. Stumm:Science, 1970, vol. 167, pp. 1121–23.CrossRefGoogle Scholar
  27. 27.
    R.V. Nicholson, R.W. Gillham, and E.J. Reardon:Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 1077–85.CrossRefGoogle Scholar
  28. 28.
    J.B. Hiskey, P.P. Phule, and M.D. Pritzker:Metall. Trans. B, 1987, vol. 18B, pp. 641–47.Google Scholar
  29. 29.
    A. Aoki and H. Kametani:Research and Development in Extractive Metallurgy, The Aust. Inst. Min. Metall., Victoria, Australia, 1987, pp. 101–08.Google Scholar
  30. 30.
    T. Koslides and V.S.T. Ciminelli:Hydrometallurgy, 1992, vol. 30, pp. 87–106.CrossRefGoogle Scholar
  31. 31.
    V.G. Papangelakis and G.P. Demopoulos:Hydrometallurgy, 1991, vol. 26, pp. 309–25.CrossRefGoogle Scholar
  32. 32.
    K.K. Mishra and K. Osseo-Asare:J. Electrochem. Soc., 1988, vol. 135, pp. 2502–09.CrossRefGoogle Scholar
  33. 33.
    K.K. Mishra and K. Osseo-Asare:Fuel, 1987, vol. 66, pp. 1161–62.CrossRefGoogle Scholar
  34. 34.
    K.K. Mishra and K. Osseo-Asare:J. Electrochem. Soc., 1992, vol. 139, pp. 749–752.CrossRefGoogle Scholar
  35. 35.
    K.K. Mishra and K. Osseo-Asare:J. Electrochem. Soc., 1992, vol. 139, pp. 3116–20.CrossRefGoogle Scholar
  36. 36.
    I.M. Kolthoff and E.B. Sandell:Textbook of Quantitative Inorganic Analysis, 3rd ed., Macmillan, New York, NY, 1952, pp. 322–36.Google Scholar
  37. 37.
    P.K. Warme:Curve Fitter, Interactive Microware, Inc., New York, NY, 1980.Google Scholar
  38. 38.
    O. Levenspiel:Chemical Reaction Engineering, Wiley, New York, NY, 1972.Google Scholar
  39. 39.
    E. Narita, F. Lawson, and K.N. Han:Hydrometallurgy, 1983, vol. 10, pp. 21–37.CrossRefGoogle Scholar
  40. 40.
    R.E. Reed-Hill:Physical Metallurgy Principles, 3rd ed., PWS-Kent Pub., Boston, MA, 1991.Google Scholar
  41. 41.
    O. Levenspiel:The Chemical Reactor Omnibook, OSU Book Stores, Inc., Corvallis, OR, 1984.Google Scholar
  42. 42.
    Rate Processes in Extractive Metallurgy, H.Y. Sohn and M.E. Wadsworth, eds., Plenum, New York, NY, 1979.Google Scholar
  43. 43.
    J. Szekely, J.W. Evans, and H.Y. Sohn:Gas-solid Reactions, Academic, New York, NY, 1976.Google Scholar
  44. 44.
    J.J.C. Jansz:Hydrometallurgy, 1984, vol. 12, pp. 225–43.CrossRefGoogle Scholar
  45. 45.
    I.H. Warren and E. Devuyst: inInternational Symposium on Hydrometallurgy, D.J.I. Evans and R.S. Shoemaker, eds., AIME, New York, NY, 1973, pp. 229–64.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1995

Authors and Affiliations

  • V. S. T. Ciminelli
    • 1
  • K. Osseo-Asare
    • 2
  1. 1.Department of Metallurgical EngineeringUniversidade Federal de Minas GeraisBelo KorizonteBrazil
  2. 2.Department of Materials Science and EngineeringPenn State University

Personalised recommendations