Annals of Biomedical Engineering

, Volume 24, Issue 3, pp 337–351 | Cite as

An interpretation of14C-urea and14C-primidone extraction in isolated rabbit lungs

  • S. H. Audi
  • C. A. Dawson
  • J. H. Linehan
  • G. S. Krenz
  • S. B. Ahlf
  • D. L. Roerig
Article

Abstract

We measured the venous concentration versus time curves of14C-urea and14C-primidone after rapid bolus injections of a vascular reference indicator, fluorescein isothiocyanate dextran, and one of the two14C-labeled indicators in isolated rabbit lungs perfused with Krebs-Ringer bicarbonate solution containing 4.5% bovine serum albumin at flow rates (F) of 6.67, 3.33, 1.67, and 0.83 ml/sec and with nearly constant microvascular pressure and total lung vascular volume. When we calculated the permeability-surface area product,PS, from the14C-urea and14C-primidone outflow curves using the Crone model, the estimates of thePS product were directly proportional toF. However, the fractional change in thePS with flow was different for the two indicators. We also estimated thePS from the same14C-urea and14C-primidone data using an alternative model that includes perfusion heterogeneity, estimated in a previous study, and flow-limited and barrier-limited extravascular volumes accessible to both urea and primidone. This model was able to fit the outflow curves of either14C-urea or14C-primidone at all four flows studied with one flow-independentPS for each indicator. The ability of the new model to explain the14C-urea and14C-primidone data with no flow-dependent change inPS suggests that a change inPS withF estimated using other models such as the Crone model is not sufficient evidence for capillary surface area recruitment.

Keywords

Permeability-surface area product Mathematical model Crone model Recruitment Lung vascular volume Sensitivity analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audi, S. H., G. S. Krenz, J. H. Linehan, D. A. Rickaby, and C. A. Dawson. Pulmonary capillary transport function from flow-limited indicators.J. Appl. Physiol. 77:332–351, 1994.PubMedGoogle Scholar
  2. 2.
    Audi, S. H., J. H. Linehan, G. S. Krenz, C. A. Dawson, S. B. Ahlf, and D. L. Roerig. Estimation of the pulmonary capillary transport function in isolated rabbit lungs.J. Appl. Physiol. 78:1004–1014, 1995.PubMedCrossRefGoogle Scholar
  3. 3.
    Bassingthwaighte, J. B., and M. Chaloupka. Sensitivity functions in the estimation of parameters of cellular exchange.Fed. Proc. 43:180–184, 1984.Google Scholar
  4. 4.
    Bronikowski, T. A., C. A. Dawson, and J. H. Linehan. On indicator dilution and perfusion heterogeneity: A stochastic model.Math Biosci. 83:199–225, 1987.CrossRefGoogle Scholar
  5. 5.
    Bronikowski, T. A., C. A. Dawson, J. H. Linehan, and D. A. Rickaby. A mathematical model of indicator extraction by the pulmonary endothelium via saturation kinetics.Math. Biosci. 61:237–266, 1982.CrossRefGoogle Scholar
  6. 6.
    Chinard, F. P., The permeability characteristics of the pulmonary blood-gas barrier. In:Advances in Respiratory Physiology, edited by C. G. Caro Baltimore Williams and Wilkins, 1966, pp. 106–147.Google Scholar
  7. 7.
    Crone, C. Permeability of capillaries in various organs as determined by use of the “indicator diffusion” method.Acta Physiol. Scand. 48:292–305, 1963.Google Scholar
  8. 8.
    Dupuis, J., C. A. Goresky, C. Juneau, A. Calderone, J. L. Rouleau, C. P. Rose, and S. Goresky. Use of norepinephrine uptake to measure lung capillary recruitment with exercise.J. Appl. Physiol. 68:700–713, 1990.PubMedGoogle Scholar
  9. 9.
    Effros, R. M., C. Murphy, K. Ozker, and A. Hacker. Kinetics of urea exchange in air-filled and fluid-filled rat lungs.Am. J. Physiol. 263:L619-L626, 1992.PubMedGoogle Scholar
  10. 10.
    Goresky C. A. Initial distribution and rate of uptake of sulfobromophthalein in the liver.Am. J. Physiol. 207:13–26, 1964.PubMedGoogle Scholar
  11. 11.
    Goresky, C. A., W. H. Ziegler, and G. G. Bach. Capillary permeability, barrier-limited and flow-limited distribution.Circ. Res. 27:739–764, 1970.PubMedGoogle Scholar
  12. 12.
    Harris, T. R., K. L. Brigham, and R. D. Rowlett. Pressure, serotonin, and histamine effects on multiple-indicator curves in sheep.J. Appl. Physiol. 44:245–253, 1978.PubMedGoogle Scholar
  13. 13.
    Harris, T. R., and K. L. Brigham. The exchange of small molecules as a measure of normal and abnormal lung microvascular function.Ann. N.Y. Acad. Sci. 417–434, 1982.Google Scholar
  14. 14.
    Harris, T. R., C. M. Waters, and F. R. Haselton. Use of scaling theory to relate measurements of lung endothelial barrier permeability.J. Appl. Physiol. 77:2496–2505, 1994.PubMedGoogle Scholar
  15. 15.
    Haselton, F. R., R. E. Parker, R. J. Roselli, and T. R. Harris. Analysis of lung multiple indicator data with an effective diffusivity model of capillary exchange.J. Appl. Physiol. 57:98–109, 1984.PubMedGoogle Scholar
  16. 16.
    Jacquez, J. A., and T. Perry. Parameter estimation: Local identifiability of parameters.Am. J. Physiol. 258:E727-E736, 1990.PubMedGoogle Scholar
  17. 17.
    König, M. F., J. M. Lucocq, and E. R. Weibel. Demonstration of pulmonary vascular perfusion by electron and light microscopy.J. Appl. Physiol. 75:1877–1883, 1993.PubMedGoogle Scholar
  18. 18.
    Lassen, N. A., and C. Crone. The extraction fraction of a capillary bed to hydrophilic molecules: Theoretical considerations regarding the single injection technique with a discussion of the role of diffusion between laminar streams (Taylor's effect). InCapillary Permeability, edited by C. Crone and N. A. Lassen. Copenhagen: Munksgaard, 1970, pp. 48–59.Google Scholar
  19. 19.
    Lassen, N. A., J. Trap-Jensen, S. C. Alexander, J. Olesen, and O. B. Paulson. Blood-brain barrier studies in man using the double-indicator method.Am. J. Physiol. 220:1627–1633, 1971.PubMedGoogle Scholar
  20. 20.
    Levin, M., J. Kuikka, and J. B. Bassingthwaighte. Sensitivity analysis of time-distributed parameters for a coronary circulation model.Med. Prog. Technol. 7:119–124, 1980.PubMedGoogle Scholar
  21. 21.
    Linehan, J. H., T. A. Bronikowski, and C. A. Dawson. Kinetics of uptake and metabolism by endothelial cells from indicator dilution data.Ann Biomed. Eng. 15:201–215, 1987.PubMedCrossRefGoogle Scholar
  22. 22.
    Nelin, L. D., D. L. Roerig, D. A. Rickaby, J. H. Linehan, and C. A. Dawson. Influence of flow on pulmonary vascular surface area inferred from blue dextran efflux data.J. Appl. Physiol. 72:874–880, 1992.PubMedGoogle Scholar
  23. 23.
    Overholser, K. A., N. A. Lamangino, R. E. Parker, N. A. Pou, and T. R. Harris. Pulmonary vascular resistance distribution and recruitment of microvascular surface area.J. Appl. Physiol. 77:845–855, 1994.PubMedGoogle Scholar
  24. 24.
    Peterson B. T., T. R. Harris, and K. L. Brigham. Comparison of sodium and urea as indicators of pulmonary vascular permeability.Exp. Lung Res. 4:79–92, 1983.PubMedGoogle Scholar
  25. 25.
    Polefka, T. G., R. A. Garrick, W. R. Redwood, N. I. Swislocki, and F. P. Chinard. Solute-excluded volumes near the Novikoff cell surface.Am. J. Physiol. 247:C350-C356, 1984.PubMedGoogle Scholar
  26. 26.
    Roerig, D. L., C. A. Dawson, S. B. Ahlf, R. D. Bongard, J. H. Linehan, and J. P. Kampine. Use of blue dextran for measuring changes in perfused vascular surface area in lungs.Am. J. Physiol. 262:H728-H733, 1992.PubMedGoogle Scholar
  27. 27.
    Sangren, W. C., and C. W. Sheppard. Mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment.Bull. Math. Biophys. 15:387–394, 1953.CrossRefGoogle Scholar
  28. 28.
    Sheppard, C. W.Basic Principles of the Tracer Method. New York: Wiley, 1962, pp. 195–198.Google Scholar
  29. 29.
    Snapper, J. R., T. R. Harris, and K. L. Brigham. Effect of changing lung mass on lung water and permeability-surface area in sheep.J. Appl. Physiol. 52:1591–1597, 1982.PubMedGoogle Scholar
  30. 30.
    Tancredi, R. G., and T. Yipintsoi: Interrelationships of flow, intravascular pressure, and tissue perfusion in the measurement of capillary permeability to sodium in isolated dog lung lobes.Circ. Res. 46:669–680, 1980.PubMedGoogle Scholar
  31. 31.
    Taylor, G. I. Dispersion of soluble matter in solvent flowing slowly through a tube.Proc. R. Soc. Lond. 219:186–203, 1953.CrossRefGoogle Scholar
  32. 32.
    Yipintsoi, T. Single-passage extraction and permeability estimation of sodium in normal dog lungs.Circ. Res. 39: 523–531, 1976.PubMedGoogle Scholar
  33. 33.
    Zelter, M., A. Lipavsky J. M. Hoeffel, and J. F. Murray. Effect of lung injuries on [14C]urea permeability-surface area product in dogs.J. Appl. Physiol. 45:1512–1520, 1984.Google Scholar

Copyright information

© Biomedical Engineering Society 1996

Authors and Affiliations

  • S. H. Audi
    • 1
  • C. A. Dawson
    • 3
    • 5
  • J. H. Linehan
    • 1
  • G. S. Krenz
    • 2
  • S. B. Ahlf
    • 5
  • D. L. Roerig
    • 4
    • 5
  1. 1.Biomedical Engineering DepartmentMarquette UniversityMilwaukee
  2. 2.Department of Mathematics Statistics and Computer ScienceMarquette UniversityMilwaukee
  3. 3.Department of PhysiologyMedical College of WisconsinMilwaukee
  4. 4.Department of Anesthesiology and Pharmacology/ToxicologyMedical College of WisconsinMilwaukee
  5. 5.Department of Veterans AffairsZablocki VA Medical CenterMilwaukee

Personalised recommendations