Advertisement

Metallurgical Transactions A

, Volume 14, Issue 5, pp 1121–1133 | Cite as

Retained Austenite and Tempered Martensite Embrittlement in Medium Carbon Steels

  • M. Sarikaya
  • A. K. Jhingan
  • G. THOMAS
Symposium on Tempering of Steel

Abstract

Electron microscopy, diffraction and microanalysis, X-ray diffraction, and auger spectroscopy have been used to study quenched and quenched and tempered 0.3 pct carbon low alloy steels. Some in situ fracture studies were also carried out in a high voltage electron microscope. Tempered martensite embrittlement (TME) is shown to arise primarily as a microstructural constraint associated with decomposition of interlath retained austenite into M3C films upon tempering in the range of 250 °C to 400 °C. In addition, intralath Widmanstätten Fe3C forms from epsilon carbide. The fracture is transgranular with respect to prior austenite. The situation is analogous to that in upper bainite. This TME failure is different from temper embrittlement (TE) which occurs at higher tempering temperatures (approximately 500 °C), and is not a microstructural effect but rather due to impurity segregation (principally sulfur in the present work) to prior austenite grain boundaries leading to intergranular fracture along those boundaries. Both failures can occur in the same steels, depending on the tempering conditions.

Keywords

Carbide Austenite Martensite Metallurgical Transaction Bainite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Thomas:Metall. Trans. A, 1978, vol. 9A, pp. 439-50.Google Scholar
  2. 2.
    J. A. McMahon and G. Thomas:Proceedings of the International Conference on the Microstructure and Design of Alloys, Inst. of Metals, London, 1973, vol. 1, pp. 180–84.Google Scholar
  3. 3.
    R. M. Horn and R. O. Ritchie:Metall. Trans. A, 1978, vol. 9A, pp. 1039-53.Google Scholar
  4. 4.
    B. V. N. Rao and G. Thomas:Metall. Trans. A, 1980, vol. 11A, pp. 441-57.Google Scholar
  5. 5.
    M. Sarikaya, B. Steinberg, and G. Thomas:Metall. Trans. A, 1982, vol. 13A, pp. 2227-37.Google Scholar
  6. 6.
    Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1973, part 31, pp. 277-93 and 960-79.Google Scholar
  7. 7.
    L. J. Klinger, W. J. Barnett, R. P. Frohmberg, and A. R. Troiano:Trans. ASM, 1954, vol. 46, pp. 1557-98.Google Scholar
  8. 8.
    B. R. Banerji:J. Iron and Steel Inst., 1965, vol. 203, pp. 166-74.Google Scholar
  9. 9.
    G. R. Speich and W. C. Leslie:Metall. Trans., 1972, vol. 3, pp. 1043-54.Google Scholar
  10. 10.
    G. Delisle and A. Galigois:J. Iron and Steel Inst., 1969, vol. 207, pp. 1628-69.Google Scholar
  11. 11.
    Jr. Rellick, C. J. McMahon:Metall. Trans., 1974, vol. 5, pp. 2439-50.Google Scholar
  12. 12.
    S. K. Banerji, C. J. McMahon Jr., and H. C. Feng:Metall. Trans. A, 1978, vol. 9A, pp. 237-47.Google Scholar
  13. 13.
    C. L. Briant, S. K. Banerji, and C. J. McMahon Jr.,:Fracture,Pergamon Press, New York, NY, 1978, vol. 1, pp. 363–85.Google Scholar
  14. 14.
    J. E. King, R. F. Smith, and J. F. Knott:, vol. 2, pp. 279–86.Google Scholar
  15. 15.
    B. V. N. Rao and G. Thomas:J. of Fracture, 1977, vol. 13, pp. 705-09.Google Scholar
  16. 16.
    M. K. D. H. Bhadeshia and D. V. Edmonds:Metal Science, 1979, vol. 13, pp. 325-34.Google Scholar
  17. 17.
    C. L. Briant and D. K. Banerji:Metall. Trans. A, 1981, vol. 12A, pp. 309-19.Google Scholar
  18. 18.
    B. C. Woodfine:J. Iron and Steel Inst., 1953, vol. 173, pp. 229-40.Google Scholar
  19. 19.
    J. M. Capus:J. Iron and Steel Inst., 1962, vol. 200, pp. 922-27.Google Scholar
  20. 20.
    J. R. Low Jr., D. F. Stein, A. M. Turkalo, and R. P. Laforce:Trans. TMS-AIME, 1968, vol. 242, pp. 14-24.Google Scholar
  21. 21.
    H. Ohtani, H. C. Feng, and C. J. McMahon Jr.:Metall. Trans., 1974, vol. 5, pp. 516-18.Google Scholar
  22. 22.
    J. E. King, R. F. Smith, and J. F. Knott:J. of Fracture, 1977, vol. 13, pp. 877-78.Google Scholar
  23. 23.
    G. Y. Lai, W. E. Wood, R. A. Clark, V. F. Zackay, and E. R. Parker:Metall. Trans., 1974, vol. 5, pp. 1663-70.Google Scholar
  24. 24.
    D. H. Huang and G. Thomas:Metall. Trans., 1971, vol. 2, pp. 1587-98.Google Scholar
  25. 25.
    M. Raghavan and G. Thomas:Metall. Trans., 1971, vol. 2, pp. 3433-39.Google Scholar
  26. 26.
    R. A. Clark and G. Thomas:Metall. Trans. A, 1975, vol. 6A, pp. 969-79.Google Scholar
  27. 27.
    M. F. Carlson, B. V. N. Rao, and G. Thomas:Metall. Trans. A, 1979, vol. 10A, pp. 1273-84.Google Scholar
  28. 28.
    J. J. Hren, J. I. Goldstein, and D. C. Joy:Introduction to Analytical ElectronMicroscopy, Plenum Press, New York, NY, 1979, pp. 121–67.Google Scholar
  29. 29.
    J. Chance and N. Ridley:Metall. Trans. A, 1981, vol. 12A, pp. 1205-13.Google Scholar
  30. 30.
    G. Thomas, M. Sarikaya, S. J. Barnard, and G. D. W. Smith: Proceedings of the Conference on Modern Developments in Physical Metallurgy of Steel, Inst. of Metals, London, in press.Google Scholar
  31. 31.
    R. L. Miller:Trans. ASM, 1964, vol. 57, p. 892.Google Scholar
  32. 32.
    S. J. Barnard, G. D. W. Smith, M. Sarikaya, and G. Thomas:Scripta Met., 1981, vol. 15, pp. 387-92.Google Scholar
  33. 33.
    M. Sarikaya, G. Thomas, J. W. Steeds, S. J. Barnard, and G. D. W. Smith:Proc. Int. Conf. on Solid → Solid Phase Transformations, H. I. Aaronson, D. E. Laughlin, R. F. Sekerka, and C. M. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, p. 1421.Google Scholar
  34. 34.
    H. W. Paxton and T. Kunitake:Trans. TMS-AIME, 1960, vol. 218, pp. 1003-09.Google Scholar
  35. 35.
    M. Sarikaya and G. Thomas: Lawrence Berkeley Laboratory, University of California, Berkeley, CA, and R. M. Fisher: U. S. Steel Corporation, Research Center, Monroeville, PA, unpublished research, 1981.Google Scholar
  36. 36.
    G. Thomas: Lawrence Berkeley Laboaratory, University of California, Berkeley, CA, unpublished research, 1981.Google Scholar
  37. 37.
    G. Thomas and M. Sarikaya:Proc. Int. Conf. on Solid → Solid Phase Transformations, H. I. Aaronson, D. E. Laughlin, R. F. Sekerka, and CM. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, p. 999.Google Scholar
  38. 38.
    H. Tokushige: Lawrence Berkeley Laboratory, University of California, Berkeley, CA, unpublished research, 1981.Google Scholar
  39. 39.
    Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, Metals Park, OH, 1977, p. 218.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1983

Authors and Affiliations

  • M. Sarikaya
  • A. K. Jhingan
    • 1
  • G. THOMAS
    • 2
  1. 1.Memorex CorporationSanta Clara
  2. 2.Department of Materials Science and Mineral EngineeringUniversity of CaliforniaBerkeley

Personalised recommendations