Advertisement

Journal of Electronic Materials

, Volume 24, Issue 4, pp 249–255 | Cite as

The influence of nitrogen ion energy on the quality of GaN films grown with molecular beam epitaxy

  • T. C. Fu
  • N. Newman
  • E. Jones
  • J. S. Chan
  • X. Liu
  • M. D. Rubin
  • N. W. Cheung
  • E. R. Weber
Article

Abstract

Since the growth of GaN using molecular beam epitaxy (MBE) occurs under metastable growth conditions, activated nitrogen is required to drive the forward synthesis reaction. In the process of exciting the nitrogen using a plasma or ion-beam source, species with large kinetic energies are generated. Impingement on the growth surface by these species can result in subsurface damage to the growing film, as well as an enhancement of the reverse decomposition reaction rate. In this study, we investigate the effect of the kinetic energy of the impinging nitrogen ions during growth on the resulting optical and structural properties of GaN films. Strong band-edge photoluminescence and cathodoluminescence are found when a kinetic energy of ∼10 eV are used, while luminescence is not detectable when the kinetic energies exceeds 18 eV. Also, we find that the use of conductive SiC substrates results in more homogeneous luminescence than the use of insulating sapphire substrates. This is attributed to sample surface charging in the case of sapphire substrates and subsequent variation in the incident ion flux and kinetic energy across the growth surface. This study clearly shows that the quality of GaN films grown by MBE are presently limited by damage from the impingement of high energy species on the growth surface.

Key words

Activated nitrogen GaN molecular beam epitaxy (MBE) nitrogen ion energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Amano, M. Kito, K. Hiramatsu and I. Akasaki,Jpn. J. Appl. Phys. L2 112 (1989).Google Scholar
  2. 2.
    S. Nakamura, T. Mukai and M. Senoh,Jpn. J. Appl. Phys. 30, L1998 (1991); B. Goldenberg, J.D. Zook and R. J. Ulmer,Appl. Phys. Lett. 62, 381 (1993).CrossRefGoogle Scholar
  3. 3.
    S. Nakamura, MRS Spring Meeting 1994, Symp. D.Google Scholar
  4. 4.
    N. Newman, J. Ross and M. Rubin,Appl. Phys. Lett. 62,1242 (1993).CrossRefGoogle Scholar
  5. 5.
    J.Y. Tsao,Materials Fundamentals of Molecular Beam Epi- Fu, Newman, Jones, Chan, Liu, Rubin, Cheung, and Webertaxy, (Academic Press, 1993).Google Scholar
  6. 6.
    M. Rubin, N. Newman, J.S. Chan, T.C. Fu and J.T. Ross,Appl. Phys. Lett. 64, 64 (1994).CrossRefGoogle Scholar
  7. 7.
    T.D. Moustakas and R.J. Molnar.Moter. Res. Soc. Conf.Proc. 281,753 (1993); M.E. Lin, G. Xue, G.L. Zhou, J.E. Green and H. Morkoç,Appl. Phys. Lett. 63,932 (1993); C. Wang and R.F. Davis,Appl. Phys. Lett. 63, 990 (1993).Google Scholar
  8. 8.
    S. Nakamura, N. Iwasa, M. Senoh and T. Mukai,Jpn. J. Appl. Phys. 31, 1258 (1993); M.S. Brandt, N.M. Johnson, R.J. Molnar, R. Singh and T.D. Moustakas,Appl. Phys. Lett. 64, 2264(1994).CrossRefGoogle Scholar
  9. 9.
    Z.A. Munir and A.W. Searcy,J. Chem. Phys. 42,4223 (1968).CrossRefGoogle Scholar
  10. 10.
    H.F. Winters and E. Kay,J. Appl. Phys. 38, 3928 (1967).CrossRefGoogle Scholar
  11. 11.
    D.K. Brice, J.Y. Tsao and S.T. Picraux,Nucleur Instruments and Methods in Physics Res. B44, 68 (1989).CrossRefGoogle Scholar
  12. 12.
    Operation of Broad Beam Sources, Harold R. Kauffman and Raymond S. Robinson, (Commonwealth Scientific Corpora- tion, Alexandria, Virginia, 1984).Google Scholar
  13. 13.
    Handbook of Ion Beam Processing Technology, eds. Jerome J. Cuomo, M. Rossnagel and Harold Kauffman, (Park Ridge, NJ: Noyes Publications, 1989.)Google Scholar
  14. 14.
    R.C. Schoonmaker, A. Buhl and J. Lemley,J. Phys. Chem. 69, 3455 (1965).CrossRefGoogle Scholar
  15. 15.
    R.C. Powell, G.A. Tomasch, Y.-W. Kim, J.A. Thornton and J.E. Greene,Mat. Res. Soc. Symp. Proc. 162, 525 (1990).Google Scholar
  16. 16.
    R.P. Vaudo, J.W. Cook, and J.F. Schetzina,J. Vac. Sci. Technol. B12, 1232 (1994).Google Scholar
  17. 17.
    J.N. Kuznia, M.A. Khan, D.T. Olson, R. Kaplan and J.A. Freitas, Jr., to be publishedJ. Appl. Phys. Google Scholar
  18. 18.
    R. Singh, J. Molnar, M.S. Unlu and T.D. Moustakas,Appl. Phys. Lett. 64, 336 (1994).CrossRefGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1995

Authors and Affiliations

  • T. C. Fu
    • 1
  • N. Newman
    • 2
    • 3
  • E. Jones
    • 2
    • 3
  • J. S. Chan
    • 1
  • X. Liu
    • 2
  • M. D. Rubin
    • 2
  • N. W. Cheung
    • 1
  • E. R. Weber
    • 2
    • 3
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of CaliforniaBerkeley
  2. 2.Lawrence Berkeley LaboratoriesUSA
  3. 3.Department of Material ScienceUniversity of CaliforniaBerkeley

Personalised recommendations