Advertisement

Processes involved in luminol oxidation accompanied by chemiluminescence

1. Mechanism of oxidation by hypochlorites
  • T. P. Vorob'eva
  • Yu. N. Kozlov
  • Yu. V. Koltypin
  • A. P. Purmal'
  • B. A. Rusin
  • V. L. Tal'roze
  • E. L. Frankevich
Article
  • 34 Downloads

Conclusions

  1. 1.

    Spectrophotometric studies have been carried out on the oxidation of luminol by sodium hypochlorite, working with solutions of various concentrations and pH values. Formation of the final product is the result of a series of successive reactions. The limiting step in the process is the two-electron oxidation of luminol (monoanion) by hypochlorous acid with the formation diazoquinone.

     
  2. 2.

    The bimolecular rate constant for the limiting step has been evaluated.

     
  3. 3.

    It has been shown that an unstable intermediate, blue-violet in color (pH<9 nm), is formed in the reaction at pH<9. It is assumed that this is a complex of diazoquinone with HOCl which is rapidly converted to stable products.

     
  4. 4.

    A parallel path for diazoquinone consumption would lead through hydrolysis and/or a series of sequential reactions, one of which would involve O2. Chemiluminescence arises in the course of this, sequence of changes.

     

Keywords

Luminol Aminophthalate Luminol Oxidation Alcohol Elimination Aminophthalazine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. O. Albrecht, Z. Phys. Chem.,136, 321, (1928).Google Scholar
  2. 2.
    A. K. Babko, L. I. Dubovenko, and N. M. Lukovskaya, Chemiluminesence Analysis [in Russian], Tekhnika, Kiev (1966).Google Scholar
  3. 3.
    G. Sharlo, Methods of Analytical Chemistry, Quantitative Analysis of Inorganic Compounds [Russian translation], Khimiya, Moscow (1969), p. 1129.Google Scholar
  4. 4.
    S. M. Osinkina-Tanevska, M. K. Bynyaeva, K. P. Mishchenko, and Sh. E. Flis, Zh. Prikl. Khim.,36, 1212 (1963).Google Scholar
  5. 5.
    A. S. Shalomeev, T. I. Smol'yaninova, E. M. Gonikberg, E. M. Brazhnikov, E. K. Russiyan, and V. M. Andreev, Izv. Akad. Nauk SSSR, Ser. Khim., 1035 (1970).Google Scholar
  6. 6.
    M. Kh. Karapet'yants and M. L. Karapet'yants, Basic Thermodynamic Constants for Organic and Inorganic Compounds [in Russian], Khimiya (1968).Google Scholar
  7. 7.
    A. D. Nadezhdin, Yu. N. Kozlov, and A. P. Purmal', Zh. Fiz. Khim.,49, 2263 (1975).Google Scholar
  8. 8.
    R. A. Clement, J. Org. Chem.,26, 1724 (1960).CrossRefGoogle Scholar
  9. 9.
    T. J. Kealy, J. Am. Chem. Soc.,84, 966 (1962).CrossRefGoogle Scholar
  10. 10.
    L. Farkas, M. Lewin, and R. Bloch, J. Am. Chem. Soc.,71, 1988 (1949).CrossRefGoogle Scholar
  11. 11.
    G. E. Lewis, Tetrahedron,10, 129 (1960).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • T. P. Vorob'eva
  • Yu. N. Kozlov
  • Yu. V. Koltypin
  • A. P. Purmal'
  • B. A. Rusin
  • V. L. Tal'roze
  • E. L. Frankevich

There are no affiliations available

Personalised recommendations