Skip to main content
Log in

The structure of NiTiCu shape memory alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A combined electron microscopy and X-ray diffraction study has been made of NiTiCu shape memory alloys where Cu is substituted for Ni in binaryβ NiTi. It is shown that the high temperature phase with the CsCl structure is retained for copper contents of up to 30 wt pct, and that this phase transforms on cooling to a monoclinic martensite with similar morphology and lattice parameters to those previously reported for the binary NiTi alloy. Initial substitution of Cu for Ni produced slight changes in the lattice parameters of both the high and low temperature phases, then these remain remarkably constant on further addition of Cu. The chief effect of the Cu substitutions is to reduce the distortion needed to form martensite from the parent austenite. An attempt to explain the effect of the Cu is made in terms of a few simple alloying theories, but it is concluded that an effective treatment must consider the interplay of several material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Buehler, J. V. Gilfrich, and R. C. Wiley:J Appl Phys., 1963, vol. 34, p. 1475.

    Article  CAS  Google Scholar 

  2. R. J. Wasilewski:Met. Trans., 1971, vol. 2, p. 2973.

    CAS  Google Scholar 

  3. G. R. Edwards, J. Perkins, and J. M. Johnson:Scripte Met, 1975, vol. 9, p. 1167.

    Article  CAS  Google Scholar 

  4. J. Perkins:Met. Trans., 1973, vol. 4, p. 2709.

    Article  CAS  Google Scholar 

  5. R. J. Wasilewski:ScriptaMet, 1975, vol. 9, p. 417.

    Article  CAS  Google Scholar 

  6. R. G. de Lange and J. A. Zijderveld:J AppL Phys., 1968, vol. 39, p. 2195.

    Article  Google Scholar 

  7. A. S. Sastri and M. J. Marcinkowski:Trans. TMS-AIME, 1968, vol. 242, p. 2393.

    CAS  Google Scholar 

  8. C. M. Wayman, I. Cornelis, and K. Shimizu:ScriptaMet, 1972, vol. 6, p. 115.

    Article  CAS  Google Scholar 

  9. K. Otsuka, T. Samamura, and C. M. Wayman:Met. Trans., 1971, vol. 2, p. 2583.

    Article  CAS  Google Scholar 

  10. D. P. Dautovich and G. R. Purdy:Can. Met Quart, 1965, vol. 3, p. 129.

    Google Scholar 

  11. F. Laves and H. J. Wallbaum:Naturwissenschaften, 1939, vol. 27, p. 674.

    Article  CAS  Google Scholar 

  12. M. J. Marcinkowski, A. S. Sastri, and D. Koskimaki:Phil. Mag., 1968, vol. 18, p. 945.

    CAS  Google Scholar 

  13. W. Schwenk and J. Huber:SAMPE Quart, 1974, vol. 5, p. 17.

    CAS  Google Scholar 

  14. E. K. Eckelmeyer:ScriptaMet., 1976, vol. 10, p. 667.

    Article  CAS  Google Scholar 

  15. K. N. Melton and 0. Mercier:ScriptaMet., 1978, vol. 12, p. 5.

    Google Scholar 

  16. K. N. Melton and O. Mercier:Met. Trans. A, 1978, vol. 9A, p. 1487.

    Google Scholar 

  17. O. Mercier and K. N. Melton:Met. Trans. A, 1979, vol. 10A, p. 387.

    CAS  Google Scholar 

  18. S. R. Zijlstra, J. Beijer, and J. A. Klosterman:J. Mater. Sci, 1974, vol. 9, p. 145.

    Article  CAS  Google Scholar 

  19. A. Nagasawa:J Phys. Soc. Jpn., 1971, vol. 31, p. 136.

    Article  CAS  Google Scholar 

  20. K. Otsuka, T. Sawamura, and K. Shimizu:Phys. Stat. Sol, 1971, vol. 5(a), p. 457.

    Google Scholar 

  21. T. V. Phillip and P. A. Beck:Trans. AIME, 1957, vol. 209, p. 1269.

    Google Scholar 

  22. R. E. Vogel and C. P. Kempter:Acta Cryst, 1961, vol. 14, p. 1130.

    Article  Google Scholar 

  23. R. F. Hehemann and G. D. Sandrock:ScriptaMet, 1971, vol. 5, p. 801.

    Article  CAS  Google Scholar 

  24. Y. Murakami, H. Asano, N. Nakanishi, and S. Kachi:Jpn. J. Appl. Phys., 1967, vol. 6, p. 1265.

    Article  CAS  Google Scholar 

  25. F. Rothwarf and L. Muldawer:J. Appl. Phys., 1962, vol. 3, p. 253.

    Google Scholar 

  26. M. E. Brookes and R. W. Smith:Met. Sci J., 1968, vol. 2, p. 81.

    Article  Google Scholar 

  27. Idem: Inst. Metals (London) Rept. No. 33, 1969, p. 266.

  28. E. Teatum, K. Gschneider, and J. Waber:Calculated Data Useful in Predicting Metallurgical Behaviour of the Elements, 1960, Los Alamos Laboratory, N. Mexico.

    Google Scholar 

  29. Handbook of Chemistry and Physics, R. C. Weast, ed., 1969, Chemical Rubber Co., Cleveland, Ohio.

    Google Scholar 

  30. N. Ridley and H. Pops:Met. Trans., 1970, vol. 1, p. 2867.

    CAS  Google Scholar 

  31. H. Jones:Physica, 1949, vol. 15, p. 13.

    Article  CAS  Google Scholar 

  32. W. Hume-Rothery and G. C. Raynor:The Structure of Metals and Alloys, Inst. of Metals, London, 1956.

    Google Scholar 

  33. H. V. Pfeifer, S. Bahn, and K. Schubert:J. L,ess Common Metals, 1968, vol. 14, p. 291.

    Article  CAS  Google Scholar 

  34. F. J. J. Van Loo, G. F. Bastian, and A. H. J. Leenen:J. Less Common Metals, 1978, vol. 57, p. 111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Visiting Scientist at Brown Boveri Research Center on leave of absence from Cambridge University, England

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bricknell, R.H., Melton, K.N. & Mercier, O. The structure of NiTiCu shape memory alloys. Metall Trans A 10, 693–697 (1979). https://doi.org/10.1007/BF02658390

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658390

Keywords

Navigation