Journal of Electronic Materials

, Volume 19, Issue 5, pp 435–441 | Cite as

The dependence of the electrical and optical properties of molecular beam epitaxial Ino.52Alo.48As on growth parameters: Interplay of surface kinetics and thermodynamics

  • J. E. Oh
  • P. K. Bhattacharya
  • Y. C. Chen
  • O. Aina
  • M. Mattingly


The optical and transport properties of In0.52Alo.48As grown by molecular beam epitaxy have been studied as a function of growth temperature in the range of 300-520° C. It is evident that under our growth conditions, thermodynamic considerations become important, and combined with surface kinetics, clustering effects become most severe for growth temperatures around 400° C. The clustering effects are manifested by changes in low-temperature photoluminescence, Hall transport and in the properties of Schottky diodes made on the films and the relevant parameters show a peaking for growth at 400° C. In particular, the Hall mobility exhibits a turning point forT > 300 K, beyond which the mobility increases with increasing temperature. In addition, the Hall electron concentration exhibits an anomalous reduction in value in the same high-temperature range. Measurements were also made on In0.52Al0.48As grown at 620-650° C by metalorganic chemical vapor deposition. While these films exhibit the same turning point in Hall mobility, the reduction in carrier concentration is significantly absent. Analysis of these data therefore indicates that the turning point in the mobility, which is present for both growth techniques, is caused by small clusters (~35Å) of phases slightly different from the mean composition. The reduction in electron concentration, seen only in the molecular beam epitaxial samples, suggest a more severe phase separation. A simple analysis for the sample grown at 400° C indicates that the compositions In0.60Al0.40As and In0.44Al0.56As might be present, in addition to the mean lattice-matched composition.

Key words

Molecular beam epitaxy ternary compounds clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. P. Hong, J. Singh and P. Bhattacharya,IEEE Electron Device Lett. EDL-7, 480 (1986).Google Scholar
  2. 2.
    A. S. Brown, J. A. Henige and M. J. Delaney,Appl. Phys. Lett. 52, 1142 (1988).CrossRefGoogle Scholar
  3. 3.
    J. E. Oh, I. Mehdi, J. Pamulapati, P. Bhattacharya and G. I. Haddad,J. Appl. Phys. 65, 842 (1989).CrossRefGoogle Scholar
  4. 4.
    K. Nakajima, T. Tanahashi and K. Akita,Appl. Phys. Lett. 41, 194 (1982).CrossRefGoogle Scholar
  5. 5.
    K. Y. Cheng and A. Y. Cho,J. Appl. Phys. 53, 4411 (1982).CrossRefGoogle Scholar
  6. 6.
    G. J. Davies, T. Kerr, C. G. Tuppen, B. Wakefield and D. A. Andrews,J. Vac. Sci. Technol. B2, 219 (1984).Google Scholar
  7. 7.
    L. Aina and M. Mattingly,Appl. Phys. Lett. 51, 1637 (1987).CrossRefGoogle Scholar
  8. 8.
    L. Aina and M. Mattingly,J. Appl. Phys. 64, 5253 (1988).CrossRefGoogle Scholar
  9. 9.
    J. Singh, S. Dudley, B. Davies and K. Bajaj,J. Appl. Phys. 60, 3167 (1986).CrossRefGoogle Scholar
  10. 10.
    W. P. Hong, P. Bhattacharya and J. Singh,Appl. Phys. Lett. 50, 618 (1987).CrossRefGoogle Scholar
  11. 11.
    W. P. Hong, A. Chin, N. Debbar, J. Hinckley, P. Bhattcharya, J. Singh and R. Clarke,J. Vac. Sci. Technol. B5, 800 (1987).Google Scholar
  12. 12.
    A. S. Brown, U. K. Mishra, J. A. Henige and M. J. Delaney,J. Vac. Sci. Technol. B6, 678 (1988).Google Scholar
  13. 13.
    B. Wakefield, M. A. G. Halliwell, T. Kerr, D. A. Andrews, G. J. Davies and D. R. Wood,Appl. Phys. Lett. 44, 341 (1984).CrossRefGoogle Scholar
  14. 14.
    P. Bhattacharya and J. Ku,J. Appl. Phys. 58, 1410 (1985).CrossRefGoogle Scholar
  15. 15.
    J. W. Harrison and J. R. Hauser,J. Appl. Phys. 47, 292 (1976).CrossRefGoogle Scholar
  16. 16.
    J. H. Marsh,Appl. Phys. Lett. 41, 732 (1982).CrossRefGoogle Scholar
  17. 17.
    P. Blood,Phys. Rev. B6, 2257 (1972).Google Scholar
  18. 18.
    A. K. Saxena, Ph.D. Thesis, University of Sheffield, England, (1978).Google Scholar
  19. 19.
    P. Chu, C. L. Lin, and H. Wieder,Appl. Phys. Lett. 53, 2423 (1988).CrossRefGoogle Scholar
  20. 20.
    P. Blood and A. D. C. Grassie,J. Appl. Phys. 56, 1866 (1984).CrossRefGoogle Scholar
  21. 21.
    M. Tachikawa, M. Mizuta, H. Kukimoto, and S. Minomura,Jpn. J. Appl. Phys. 24, L821 (1985).CrossRefGoogle Scholar
  22. 22.
    R. A. Swalin, “Thermodynamics of Solids”, (John Wiley and Sons), 1972.Google Scholar
  23. 23.
    K. Onabe,Jpn. J. Appl. Phys. 21, L323 (1982).CrossRefGoogle Scholar

Copyright information

© The Mineral, Metal & Materials Society, Inc. 1990

Authors and Affiliations

  • J. E. Oh
    • 1
  • P. K. Bhattacharya
    • 1
  • Y. C. Chen
    • 1
  • O. Aina
    • 2
  • M. Mattingly
    • 2
  1. 1.Center for High-Frequency Microelectronics and Solid State Electronics Laboratory Department of Electrical Engineering and Computer ScienceThe University of MichiganAnn Arbor
  2. 2.Allied Signal Aerospace Technology CenterColumbia

Personalised recommendations